Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 15, 2013

Function projective synchronization of two four-scroll hyperchaotic systems with unknown parameters

  • Zhenwu Sun EMAIL logo
From the journal Open Physics

Abstract

Function projective synchronization (FPS) of two novel hyperchaotic systems with four-scroll attractors which have been found up to the present is investigated. Adaptive control is employed in the situation that system parameters are unknown. Based on Lyapunov stability theory, an adaptive controller and a parameter update law are designed so that the two systems can be synchronized asymptotically by FPS. Numerical simulation is provided to show the effectiveness of the proposed adaptive controller and the parameter update law.

[1] Z. X. Wang, K. Shen, Cent. Eur. J. Phys. 6, 402 (2008) http://dx.doi.org/10.2478/s11534-008-0063-810.2478/s11534-008-0063-8Search in Google Scholar

[2] H. Merta, Chaos Solitons Fract. 27, 279 (2006) http://dx.doi.org/10.1016/j.chaos.2005.03.02810.1016/j.chaos.2005.03.028Search in Google Scholar

[3] S. Gakkhar, R. K. Naji, Commun. Nonlinear Sci. Numer. Simul. 10, 105 (2005) http://dx.doi.org/10.1016/S1007-5704(03)00120-510.1016/S1007-5704(03)00120-5Search in Google Scholar

[4] H. J. Chen, M. C. Li, J. Econ. Behav. Organ. 65, 245 (2008) http://dx.doi.org/10.1016/j.jebo.2005.09.00510.1016/j.jebo.2005.09.005Search in Google Scholar

[5] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963) http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;210.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2Search in Google Scholar

[6] G. R. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999) http://dx.doi.org/10.1142/S021812749900102410.1142/S0218127499001024Search in Google Scholar

[7] G. Y. Wang et al., Chin. Phys. 15, 2872 (2006) http://dx.doi.org/10.1088/1009-1963/15/12/01810.1088/1009-1963/15/12/018Search in Google Scholar

[8] C. Liu, L. Liu, T. Liu, Chaos Solitons Fract. 39, 1950 (2009) http://dx.doi.org/10.1016/j.chaos.2007.06.07910.1016/j.chaos.2007.06.079Search in Google Scholar

[9] S. Dadras, H. R. Momeni, Phys. Lett. A 373, 3637 (2009) http://dx.doi.org/10.1016/j.physleta.2009.07.08810.1016/j.physleta.2009.07.088Search in Google Scholar

[10] L. Wang, Nonlinear Dyn. 56, 453 (2009) http://dx.doi.org/10.1007/s11071-008-9417-410.1007/s11071-008-9417-4Search in Google Scholar

[11] G. Qi, G. Chen, Y. Zhang, Phys. Lett. A 352, 386 (2006) http://dx.doi.org/10.1016/j.physleta.2005.12.03010.1016/j.physleta.2005.12.030Search in Google Scholar

[12] G. Qi, B. J. Wyk, M. A. Wyk, Chaos Solitons Fract. 40, 2016 (2009) http://dx.doi.org/10.1016/j.chaos.2007.09.09510.1016/j.chaos.2007.09.095Search in Google Scholar

[13] Q. Jia, Phys. Lett. A 371, 410 (2007) http://dx.doi.org/10.1016/j.physleta.2007.06.03810.1016/j.physleta.2007.06.038Search in Google Scholar

[14] G. M. Mahmoud, E. E. Mahmoud, M. E. Ahmed, Nonlinear Dyn. 58, 725 (2009) http://dx.doi.org/10.1007/s11071-009-9513-010.1007/s11071-009-9513-0Search in Google Scholar

[15] Y. J. Niu, X. Y. Wang, M. J. Wang, H. G. Zhang, Commun. Nonlinear Sci. Numer. Simulat. 15, 3518 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.08.01410.1016/j.cnsns.2009.08.014Search in Google Scholar

[16] S. Dadras, H. R. Momeni, Phys. Lett. A 374, 1368 (2010) http://dx.doi.org/10.1016/j.physleta.2010.01.03010.1016/j.physleta.2010.01.030Search in Google Scholar

[17] S. Cang, G. Qi, Z. Chen, Nonlinear Dyn. 59, 515 (2010) http://dx.doi.org/10.1007/s11071-009-9558-010.1007/s11071-009-9558-0Search in Google Scholar

[18] J. P. Goedgebuer, L. Larger, H. Port, Phys. Rev. Lett. 80, 2249 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.224910.1103/PhysRevLett.80.2249Search in Google Scholar

[19] A. Kiani, K. Fallahi, N. Pariz, H. Leung, Commun. Nonlinear Sci. Numer. Simulat. 14, 863 (2009) http://dx.doi.org/10.1016/j.cnsns.2007.11.01110.1016/j.cnsns.2007.11.011Search in Google Scholar

[20] X. J. Wu, H. Wang, H. T. Lu, Nonlinear Anal. 12, 1288 (2011) http://dx.doi.org/10.1016/j.nonrwa.2010.09.02610.1016/j.nonrwa.2010.09.026Search in Google Scholar

[21] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.82110.1103/PhysRevLett.64.821Search in Google Scholar PubMed

[22] J. A. Laoye, U. E. Vincent, S. O. Kareem, Chaos Solitons Fract. 39, 356 (2009) http://dx.doi.org/10.1016/j.chaos.2007.04.02010.1016/j.chaos.2007.04.020Search in Google Scholar

[23] A. L. Ricardo, M. G. Rafael, Chaos Solitons Fract. 38, 531 (2008) http://dx.doi.org/10.1016/j.chaos.2006.11.03810.1016/j.chaos.2006.11.038Search in Google Scholar

[24] J. M. Nazzal, A. N. Natsheh, Chaos Solitons Fract. 33, 695 (2007) http://dx.doi.org/10.1016/j.chaos.2006.01.07110.1016/j.chaos.2006.01.071Search in Google Scholar

[25] Y. Tang, J. Fang, Commun. Nonlinear Sci. Numer. Simulat. 14, 3615 (2009) http://dx.doi.org/10.1016/j.cnsns.2009.02.00610.1016/j.cnsns.2009.02.006Search in Google Scholar

[26] G. Santoboni, A. Y. Pogromsky, H. Nijmeijer, Phys. Lett. A 291, 265 (2001) http://dx.doi.org/10.1016/S0375-9601(01)00652-110.1016/S0375-9601(01)00652-1Search in Google Scholar

[27] Y. Chen, X. Chen, S. Gu, Nonlinear Anal. 9, 1929 (2007) http://dx.doi.org/10.1016/j.na.2006.02.03310.1016/j.na.2006.02.033Search in Google Scholar

[28] R. Mainieri, J. Rehacek, Phys. Rev. Lett. 82, 3042 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.304210.1103/PhysRevLett.82.3042Search in Google Scholar

[29] C. Y. Chee, D. Xu, Chaos Solitons Fract. 23, 1063 (2005) 10.1016/S0960-0779(04)00366-2Search in Google Scholar

[30] G. Alvarez, S. J. Li, F. Montoya, G. Pastor, M. Romera, Chaos Solitons Fract. 24, 775 (2005) http://dx.doi.org/10.1016/j.chaos.2004.09.03810.1016/j.chaos.2004.09.038Search in Google Scholar

[31] G. H. Li, Chaos Solitons Fract. 32, 1786 (2007) http://dx.doi.org/10.1016/j.chaos.2005.12.00910.1016/j.chaos.2005.12.009Search in Google Scholar

[32] R. Z. Luo, Phys. Lett. A 372, 3667 (2008) http://dx.doi.org/10.1016/j.physleta.2008.02.03510.1016/j.physleta.2008.02.035Search in Google Scholar

[33] T. H. Lee, J. H. Park, Chin. Phys. Lett. 26, 090507 (2009) http://dx.doi.org/10.1088/0256-307X/26/9/09050710.1088/0256-307X/26/9/090507Search in Google Scholar

Published Online: 2013-1-15
Published in Print: 2013-1-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.6.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0117-9/html
Scroll to top button