Abstract
We present a rigorous path integral treatment of a dynamical system in the axially symmetric potential $V(r,\theta ) = V(r) + \tfrac{1} {{r^2 }}V(\theta ) $ . It is shown that the Green’s function can be calculated in spherical coordinate system for $V(\theta ) = \frac{{\hbar ^2 }} {{2\mu }}\frac{{\gamma + \beta \sin ^2 \theta + \alpha \sin ^4 \theta }} {{\sin ^2 \theta \cos ^2 \theta }} $ . As an illustration, we have chosen the example of a spherical harmonic oscillator and also the Coulomb potential for the radial dependence of this noncentral potential. The ring-shaped oscillator and the Hartmann ring-shaped potential are considered as particular cases. When α = β = γ = 0, the discrete energy spectrum, the normalized wave function of the spherical oscillator and the Coulomb potential of a hydrogen-like ion, for a state of orbital quantum number l ≥ 0, are recovered.
[1] H. Hartmann, Theor. Chim. Acta 24, 201 (1972) http://dx.doi.org/10.1007/BF0064139910.1007/BF00641399Search in Google Scholar
[2] H. Hartmann, R. Schuck, J. Radtke, Theor. Chim. Acta 42, 1 (1976) http://dx.doi.org/10.1007/BF0054828510.1007/BF00548285Search in Google Scholar
[3] H. Hartmann, D. Schuch, Int. J. Quantum Chem. 18, 125 (1980) http://dx.doi.org/10.1002/qua.56018011910.1002/qua.560180119Search in Google Scholar
[4] C. Quesne, J. Phys. A 21, 3093 (1988) http://dx.doi.org/10.1088/0305-4470/21/14/01010.1088/0305-4470/21/14/010Search in Google Scholar
[5] M.V. Carpio, A. Inomata, In: Path integrals from meV to MeV, eds. M.C. Gutzwiller, A. Inomata, J. Klauder, L. Streit (World Scientific, Singapore, 1986) 261 Search in Google Scholar
[6] I. Sokmen, Phys. Lett. A 115, 249 (1986) http://dx.doi.org/10.1016/0375-9601(86)90546-310.1016/0375-9601(86)90546-3Search in Google Scholar
[7] L. Chetouani, L. Guechi, T. F. Hammann, Phys. Lett. A 125, 277 (1987) http://dx.doi.org/10.1016/0375-9601(87)90142-310.1016/0375-9601(87)90142-3Search in Google Scholar
[8] M. Kibler, T. Negadi, Int. J. Quantum Chem. 26, 405 (1984) http://dx.doi.org/10.1002/qua.56026030810.1002/qua.560260308Search in Google Scholar
[9] C.C. Gerry, Phys. Lett. A 118, 445 (1986) http://dx.doi.org/10.1016/0375-9601(86)90748-610.1016/0375-9601(86)90748-6Search in Google Scholar
[10] M. Kibler, P. Winternitz, J. Phys. Math. Gen. 20, 4097 (1987) http://dx.doi.org/10.1088/0305-4470/20/13/01810.1088/0305-4470/20/13/018Search in Google Scholar
[11] A. Guha, S. Mukherjee, J. Math. Phys. 28, 840 (1987) http://dx.doi.org/10.1063/1.52757310.1063/1.527573Search in Google Scholar
[12] A.N. Vaidya, H. Boschi Filho, J. Math. Phys. 31, 1951 (1990) http://dx.doi.org/10.1063/1.52864310.1063/1.528643Search in Google Scholar
[13] L. Chetouani, L. Guechi, T. F. Hammann, J. Math. Phys. 33, 3410 (1992) http://dx.doi.org/10.1063/1.52988910.1063/1.529889Search in Google Scholar
[14] A.A. Makarov, J.A. Smorodinsky, Kh. Valiev, P. Winternitz, Nuovo Cimento A 52, 1061 (1967) http://dx.doi.org/10.1007/BF0275521210.1007/BF02755212Search in Google Scholar
[15] N.W. Evans, Phys. Lett. A 147, 483 (1990) http://dx.doi.org/10.1016/0375-9601(90)90611-Q10.1016/0375-9601(90)90611-QSearch in Google Scholar
[16] N.W. Evans, Phys. Rev. A 41, 5666 (1990) http://dx.doi.org/10.1103/PhysRevA.41.566610.1103/PhysRevA.41.5666Search in Google Scholar PubMed
[17] N.W. Evans, J. Math. Phys. 31, 600 (1990) http://dx.doi.org/10.1063/1.52889510.1063/1.528895Search in Google Scholar
[18] C. Grosche, G.S. Pogosyan, A.N. Sissakian, Fortschr. Phys. 43, 453 (1995) http://dx.doi.org/10.1002/prop.219043060210.1002/prop.2190430602Search in Google Scholar
[19] L. Chetouani, L. Guechi, T. F. Hammann, J. Math. Phys. 42, 4684 (2001) http://dx.doi.org/10.1063/1.139663510.1063/1.1396635Search in Google Scholar
[20] C. Berkdemir, J. Math. Chem. 46, 139 (2009) http://dx.doi.org/10.1007/s10910-008-9447-710.1007/s10910-008-9447-7Search in Google Scholar
[21] M.C. Zhang, G.H. Sun, S.H. Dong, Phys. Lett. A 374, 704 (2010) http://dx.doi.org/10.1016/j.physleta.2009.11.07210.1016/j.physleta.2009.11.072Search in Google Scholar
[22] A. Arda, R. Sever, J. Math. Chem. 50, 1484 (2012) http://dx.doi.org/10.1007/s10910-012-9984-y10.1007/s10910-012-9984-ySearch in Google Scholar
[23] I.H. Duru, Phys. Rev. D 30, 2121 (1984) http://dx.doi.org/10.1103/PhysRevD.30.212110.1103/PhysRevD.30.2121Search in Google Scholar
[24] M. Bohm, G. Junker, J. Math. Phys. 28, 1978 (1987) http://dx.doi.org/10.1063/1.52746010.1063/1.527460Search in Google Scholar
[25] L. Chetouani, L. Guechi, M. Letlout, T.F. Hammann, Nuovo Cimento B 105, 387 (1990) http://dx.doi.org/10.1007/BF0272882110.1007/BF02728821Search in Google Scholar
[26] I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1965) Search in Google Scholar
[27] B.S. Dewitt, Rev. Mod. Phys. 29, 377 (1957) http://dx.doi.org/10.1103/RevModPhys.29.37710.1103/RevModPhys.29.377Search in Google Scholar
[28] D.W. Mc Laughlin, L.S. Schulman, J. Math. Phys. 12, 2520 (1971) http://dx.doi.org/10.1063/1.166556710.1063/1.1665567Search in Google Scholar
[29] I.H. Duru, H. Kleinert, Phys. Lett. B 84, 185 (1979) http://dx.doi.org/10.1016/0370-2693(79)90280-610.1016/0370-2693(79)90280-6Search in Google Scholar
[30] I.H. Duru, H. Kleinert, Fortschr. Phys., 30, 401 (1982) http://dx.doi.org/10.1002/prop.1982030080210.1002/prop.19820300802Search in Google Scholar
[31] D. Peak, A. Inomata, J. Math. Phys. 10, 1422 (1969) http://dx.doi.org/10.1063/1.166498410.1063/1.1664984Search in Google Scholar
[32] M.V. Carpio-Bernido, C.C. Bernido, Phys. Lett. A 134, 395 (1989) http://dx.doi.org/10.1016/0375-9601(89)90357-510.1016/0375-9601(89)90357-5Search in Google Scholar
© 2012 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.