Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 15, 2013

Bäcklund transformation for the first flows of the relativistic Toda hierarchy and associated properties

  • Anindya Choudhury EMAIL logo
From the journal Open Physics

Abstract

In this communication we study a class of one parameter dependent auto-Bäcklund transformations for the first flow of the relativistic Toda lattice and also a variant of the usual Toda lattice equation. It is shown that starting from the Hamiltonian formalism such transformations are canonical in nature with a well defined generating function. The notion of spectrality is also analyzed and the separation variables are explicitly constructed.

[1] E.K. Sklyanin, CRM Proc. Lect. Notes 26, 227 (2000) 10.1090/crmp/026/11Search in Google Scholar

[2] V.B. Kuznetsov, A.V. Tsiganov, arXiv:hepth/9402111v1 Search in Google Scholar

[3] V.B. Kuznetsov, E.K. Sklyanin, J. Phys. Math. Gen. 31, 2241 (1998) http://dx.doi.org/10.1088/0305-4470/31/9/01210.1088/0305-4470/31/9/012Search in Google Scholar

[4] A. Roy Chowdhury, A. Ghose Choudhury, Quantum Integrable systems (Chapman and Hall, London, 2004) http://dx.doi.org/10.1201/978020349801910.1201/9780203498019Search in Google Scholar

[5] B. Khanra, A. Ghose Choudhury, Inv. Prob. 25, 085002 (2009) http://dx.doi.org/10.1088/0266-5611/25/8/08500210.1088/0266-5611/25/8/085002Search in Google Scholar

[6] B. Khanra, A. Ghose Choudhury, Phys. Lett. A 374, 4120 (2010) http://dx.doi.org/10.1016/j.physleta.2010.08.01910.1016/j.physleta.2010.08.019Search in Google Scholar

[7] Y.B. Suris, arXiv:Solv-int/9703004v2 Search in Google Scholar

[8] Y.B. Suris, J. Phys. Math. Gen. 30, 1745 (1997) http://dx.doi.org/10.1088/0305-4470/30/5/03510.1088/0305-4470/30/5/035Search in Google Scholar

[9] Y.B. Suris, In: J.P. Françoise, G.L. Naber, Tsou S.T. (Eds.), Encyclopedia of Mathematical Physics (Elsevier, Oxford, 2006) 235 http://dx.doi.org/10.1016/B0-12-512666-2/00189-910.1016/B0-12-512666-2/00189-9Search in Google Scholar

[10] M. Toda, Theory of Nonlinear lattices (Springer, Berlin, 1981) http://dx.doi.org/10.1007/978-3-642-96585-210.1007/978-3-642-96585-2Search in Google Scholar

[11] V.B. Kuznetsov, M. Salerno, E.K. Sklyanin, J. Phys. Math. Gen. 33, 171 (2000) http://dx.doi.org/10.1088/0305-4470/33/1/31110.1088/0305-4470/33/1/311Search in Google Scholar

[12] Y.B. Suris, J. Phys. Math. Gen. 30, 2235 (1997) http://dx.doi.org/10.1088/0305-4470/30/6/04110.1088/0305-4470/30/6/041Search in Google Scholar

[13] A. Roy Chowdhury, A. Ghose Choudhury, Phys. Lett. A 280, 37 (2001) http://dx.doi.org/10.1016/S0375-9601(00)00817-310.1016/S0375-9601(00)00817-3Search in Google Scholar

Published Online: 2013-1-15
Published in Print: 2013-1-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.3.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0127-7/html
Scroll Up Arrow