Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 15, 2013

Notes on entropic characteristics of quantum channels

  • Alexey Rastegin EMAIL logo
From the journal Open Physics

Abstract

One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss a few channel characteristics expressed by means of generalized entropies. Such characteristics can often be treated in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the q-average output entropy of degree q ≥ 1 is bounded from above by the q-entropy of the input density matrix. The concavity properties of the (q, s)-entropy exchange are considered. Fano type quantum bounds on the (q, s)-entropy exchange are derived. We also give upper bounds on the map (q, s)-entropies in terms of the output entropy, corresponding to the completely mixed input.

[1] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Search in Google Scholar

[2] I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006) http://dx.doi.org/10.1017/CBO978051153504810.1017/CBO9780511535048Search in Google Scholar

[3] A. Rényi, In: J. Neyman (Ed.), Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. I (University of California Press, Berkeley, 1961) 547 Search in Google Scholar

[4] C. Tsallis, J. Stat. Phys. 52, 479 (1988) http://dx.doi.org/10.1007/BF0101642910.1007/BF01016429Search in Google Scholar

[5] X. Hu, Z. Ye, J. Math. Phys. 47, 023502 (2006) http://dx.doi.org/10.1063/1.216579410.1063/1.2165794Search in Google Scholar

[6] A.E. Rastegin, J. Stat. Phys. 143, 1120 (2011) http://dx.doi.org/10.1007/s10955-011-0231-x10.1007/s10955-011-0231-xSearch in Google Scholar

[7] B. Schumacher, Phys. Rev. A 54, 2614 (1996) http://dx.doi.org/10.1103/PhysRevA.54.261410.1103/PhysRevA.54.2614Search in Google Scholar

[8] K. Zyczkowski, I. Bengtsson, Open Sys. Inf. Dyn. 11, 3 (2004) http://dx.doi.org/10.1023/B:OPSY.0000024753.05661.c210.1023/B:OPSY.0000024753.05661.c2Search in Google Scholar

[9] W. Roga, Z. Puchała, Ł. Rudnicki, K. Zyczkowski, arXiv:1206.2536 [quant-ph] Search in Google Scholar

[10] S. Wehner, A. Winter, New J. Phys. 12, 025009 (2010) http://dx.doi.org/10.1088/1367-2630/12/2/02500910.1088/1367-2630/12/2/025009Search in Google Scholar

[11] I. Bialynicki-Birula, Ł. Rudnicki, Entropic Uncertainty Relations in Quantum Physics, In: K. D. Sen (Ed.), Statistical Complexity, 1 (Springer, Berlin, 2011) 10.1007/978-90-481-3890-6-1 http://dx.doi.org/10.1007/978-90-481-3890-6_110.1007/978-90-481-3890-6_1Search in Google Scholar

[12] W. Roga, M. Fannes, K. Zyczkowski, Int. J. Quant. Inf. 9, 1031 (2011) http://dx.doi.org/10.1142/S021974991100779410.1142/S0219749911007794Search in Google Scholar

[13] P.W. Shor, Commun. Math. Phys. 246, 453 (2004) http://dx.doi.org/10.1007/s00220-003-0981-710.1007/s00220-003-0981-7Search in Google Scholar

[14] F.G.S.L. Brandão, M. Horodecki, Open Sys. Inf. Dyn. 17, 31 (2010) http://dx.doi.org/10.1142/S123016121000004710.1142/S1230161210000047Search in Google Scholar

[15] A.E. Rastegin, J. Phys. A: Math. Theor. 45, 045302 (2012) http://dx.doi.org/10.1088/1751-8113/45/4/04530210.1088/1751-8113/45/4/045302Search in Google Scholar

[16] G. Lindblad, In: C. Bendjaballah, O. Hirota, S. Reynaud (Eds.), Lect. Notes Phys. 378, 71 (1991) Search in Google Scholar

[17] J. Havrda, F. Charvát, Kybernetika 3, 30 (1967) Search in Google Scholar

[18] E.M.F. Curado, C. Tsallis, J. Phys. A: Math. Gen. 24, L69 (1991) http://dx.doi.org/10.1088/0305-4470/24/2/00410.1088/0305-4470/24/2/004Search in Google Scholar

[19] V. Majerník, E. Majerníková, S. Shpyrko, Cent. Eur. J. Phys. 3, 393 (2003) http://dx.doi.org/10.2478/BF0247585210.2478/BF02475852Search in Google Scholar

[20] S. Wehner, A. Winter, J. Math. Phys. 49, 062105 (2008) http://dx.doi.org/10.1063/1.294368510.1063/1.2943685Search in Google Scholar

[21] A.E. Rastegin, J. Phys. A: Math. Theor. 43, 155302 (2010) http://dx.doi.org/10.1088/1751-8113/43/15/15530210.1088/1751-8113/43/15/155302Search in Google Scholar

[22] A.E. Rastegin, J. Phys. A: Math. Theor. 44, 095303 (2011) http://dx.doi.org/10.1088/1751-8113/44/9/09530310.1088/1751-8113/44/9/095303Search in Google Scholar

[23] A.E. Rastegin, Phys. Scr. 84, 057001 (2011) http://dx.doi.org/10.1088/0031-8949/84/05/05700110.1088/0031-8949/84/05/057001Search in Google Scholar

[24] A.E. Rastegin, Int. J. Theor. Phys. 51, 1300 (2012) http://dx.doi.org/10.1007/s10773-011-1006-510.1007/s10773-011-1006-5Search in Google Scholar

[25] G. Wilk, Z. WŁodarczyk, Cent. Eur. J. Phys. 10, 568 (2012) http://dx.doi.org/10.2478/s11534-011-0111-710.2478/s11534-011-0111-7Search in Google Scholar

[26] G.A. Raggio, J. Math. Phys. 36, 4785 (1995) http://dx.doi.org/10.1063/1.53092010.1063/1.530920Search in Google Scholar

[27] J. Watrous, Theory of Quantum Information (Lecture notes for CS 798, University of Waterloo, 2008) Search in Google Scholar

[28] A. JamioŁkowski, Rep. Math. Phys. 3, 275 (1972) http://dx.doi.org/10.1016/0034-4877(72)90011-010.1016/0034-4877(72)90011-0Search in Google Scholar

[29] M.-D. Choi, Linear Algebra Appl. 10, 285 (1975) http://dx.doi.org/10.1016/0024-3795(75)90075-010.1016/0024-3795(75)90075-0Search in Google Scholar

[30] J.A. Miszczak, Int. J. Mod. Phys. C 22, 897 (2011) http://dx.doi.org/10.1142/S012918311101668310.1142/S0129183111016683Search in Google Scholar

[31] W. Roga, M. Fannes, K. Zyczkowski, Phys. Rev. Lett. 105, 040505 (2011) http://dx.doi.org/10.1103/PhysRevLett.105.04050510.1103/PhysRevLett.105.040505Search in Google Scholar PubMed

[32] A.E. Rastegin, Quantum Inf. Process., DOI:10.1007/s11128-011-0347-6 10.1007/s11128-011-0347-6Search in Google Scholar

[33] K. Audenaert, J. Math. Phys. 48, 083507 (2007) http://dx.doi.org/10.1063/1.277154210.1063/1.2771542Search in Google Scholar

[34] S. Furuichi, J. Math. Phys. 47, 023302 (2006) http://dx.doi.org/10.1063/1.216574410.1063/1.2165744Search in Google Scholar

[35] J. Preskill, Quantum Computation and Information (Lecture notes for Physics 229, California Institute of Technology, 1998) Search in Google Scholar

[36] E.A. Carlen, Trace Inequalities and Quantum Entropy: An Introductory Course (Lecture course given at “Entropy and the Quantum”, Tucson, Arizona, 2009) 10.1090/conm/529/10428Search in Google Scholar

[37] J.-C. Bourin, F. Hiai, Int. J. Math. 22, 1121 (2011) http://dx.doi.org/10.1142/S0129167X1100715X10.1142/S0129167X1100715XSearch in Google Scholar

[38] A.E. Rastegin, J. Stat. Phys. 148, 1040 (2012) http://dx.doi.org/10.1007/s10955-012-0569-810.1007/s10955-012-0569-8Search in Google Scholar

[39] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities (Cambridge University Press, London, 1934) Search in Google Scholar

[40] K. Fan, Proc. Nat. Acad. Sci. USA 35, 652 (1949) http://dx.doi.org/10.1073/pnas.35.11.65210.1073/pnas.35.11.652Search in Google Scholar PubMed PubMed Central

[41] R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985) 10.1017/CBO9780511810817Search in Google Scholar

Published Online: 2013-1-15
Published in Print: 2013-1-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.3.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0134-8/html
Scroll Up Arrow