Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 24, 2013

Above-threshold ionization of hydrogen and hydrogen-like ions by X-ray pulses

Henri Bachau, Olimpia Budriga, Mihai Dondera and Viorica Florescu
From the journal Open Physics


This paper adresses the problem of above-threshold ionization (ATI) of hydrogen interacting with an intense X-ray electromagnetic field. Two approaches have been used. In the first approach, we calculate generalized differential and total cross sections based on second-order perturbation theory for the electron interaction with a monochromatic plane wave, with the A 2 and A · P contributions from the nonrelativistic Hamiltonian (including retardation) treated exactly. In the second approach, we solve the time-dependent Schrödinger equation (TDSE) for a pulsed plane wave using a spectral approach with a basis of oneelectron orbitals, calculated with L 2-integrable B-spline functions for the radial coordinate and spherical harmonics Y lm for the angular part. Retardation effects are included up to O(1/c), they induce extra terms forcing the resolution of the TDSE in a three dimensional space. Relativistic effects [of O (1/c 2)] are fully neglected. The isoelectronic series of hydrogen is explored in the range Z = 1 − 5 in both TDSE and perturbative approaches. Photoelectron angular distributions are obtained for photon energies of 1 keV and 3 keV for hydrogen, and photon energy of 25 keV for the hydrogenic ion B4+. Perturbative and TDSE calculations are compared.

[1] W. Ackermann et al., Nat. Photonics 1, 336 (2007) in Google Scholar

[2] P. Emma et al., Nat. Photonics 4, 641 (2010) in Google Scholar

[3] G. Doumy et al., Phys. Rev. Lett. 106, 083002 (2011) in Google Scholar

[4] M. G. Makris, P. Lambropoulos, A. Mihelic, Phys. Rev. Lett. 102, 033002 (2009) in Google Scholar

[5] V. Florescu, O. Budriga, H. Bachau, Phys. Rev. A 84, 033425 (2011) in Google Scholar

[6] M. Dondera, H. Bachau, Phys. Rev. A 85, 013423 (2012) in Google Scholar

[7] A. Maquet, V. Véniard, T. Marian, J. Phys. B-At. Mol. Opt. 31, 3743 (1998) in Google Scholar

[8] E. Karule, A. Gailitis, J. Phys. B-At. Mol. Opt. 43, 065601 (2010) in Google Scholar

[9] H. R. Varma, M. F. Ciappina, N. Rohringer, R. Santra, Phys. Rev. A 80, 054324 (2009) in Google Scholar

[10] P. Koval, S. Fritzsche, A. Surzhykov, J. Phys. B-At. Mol. Opt. 36, 873 (2003) in Google Scholar

[11] P. Koval, S. Fritzsche, A. Surzhykov, J. Phys. B-At. Mol. Opt. 37, 375 (2004) in Google Scholar

[12] J. R. Vázquez de Aldana et al., Phys. Rev. A 64, 013411 (2001) in Google Scholar

[13] S. Klarsfeld, Lett. Nuovo Cimento 2, 548 (1969) in Google Scholar

[14] M. Gavrila, Lett. Nuovo Cimento 2, 180 (1969) in Google Scholar

[15] M. Gavrila, Phys. Rev. A 6, 1348 (1972) in Google Scholar

[16] W. Zernik, Phys. Rev. 135, A51 (1964) in Google Scholar

[17] L. B. Madsen, P. Lambropoulos, Phys. Rev. A 59, 4574 (1999) in Google Scholar

[18] H. G. Muller, In B. Piraux, K. Rzazewski (Ed.), Weakly relativistic stabilization: the effect of the magnetic field (Kluwer, Dordrecht, 2001) 339 10.1007/978-94-010-0754-2_32Search in Google Scholar

[19] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, F. Martín, Rep. Prog. Phys. 64, 1815 (2001) in Google Scholar

[20] M. Dondera, Phys. Rev. A 82, 053419 (2010) in Google Scholar

[21] A. Macías, F. Martín, A. Riera, M. Yáñez, Int. J. Quantum Chem. 33, 279 (1988) in Google Scholar

[22] V. Florescu, O. Budriga, H. Bachau, Phys. Rev. A 86, 033413 (2012) in Google Scholar

Published Online: 2013-11-24
Published in Print: 2013-9-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow