Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 4, 2012

Induced anomalous current in relativistic hydrodynamics with chiral anomaly

Shi Pu and Jian-hua Gao
From the journal Open Physics


We discuss the triangle anomalous hydrodynamics in the presence of an external magnetic field B µ. Without loss of generality, we consider the case of a conserved vector current and non-conserved axial current. In order to ensure the positivity of the entropy production rate, two new terms proportional to the magnetic field B µ and the vorticity ω µ, which are associated with the Chiral Magnetic Effect and Chiral Vortical Effect in heavy ion collisions, need to be introduced. The transport coefficients of these new terms are also determined by the entropy principle.

[1] C. Eckart, Phys. Rev. 58, 919 (1940) in Google Scholar

[2] L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959) Search in Google Scholar

[3] W. Israel, Annals Phys. 100, 310 (1976) in Google Scholar

[4] W. Israel, J. M. Stewart, Annals Phys. 118, 341 (1979) in Google Scholar

[5] P. Jacobs, X. N. Wang, Prog. Part. Nucl. Phys. 54, 443 (2005) in Google Scholar

[6] E. V. Shuryak, Nucl. Phys. A 750, 64 (2005) in Google Scholar

[7] M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005) in Google Scholar

[8] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen, S. A. Voloshin, Phys. Lett. B 503, 58 (2001) in Google Scholar

[9] P. F. Kolb, U. W. Heinz, arXiv:nucl-th/0305084 Search in Google Scholar

[10] H. Song and U. W. Heinz, Phys. Lett. B 658, 279 (2008). in Google Scholar

[11] A. Muronga, Phys. Rev. Lett. 88, 062302 (2002) [Erratum-ibid. 89, 159901 (2002)] in Google Scholar PubMed

[12] A. Muronga, D. H. Rischke, arXiv:nucl-th/0407114 Search in Google Scholar

[13] P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007) in Google Scholar PubMed

[14] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, M. A. Stephanov, J. High Energ. Phys. 0804, 100 (2008) in Google Scholar

[15] B. Betz, D. Henkel, D. H. Rischke, Prog. Part. Nucl. Phys. 62, 556 (2009) in Google Scholar

[16] J. Erdmenger, M. Haack, M. Kaminski, A. Yarom, J. High Energ. Phys. 0901, 055 (2009) in Google Scholar

[17] N. Banerjee et al. arXiv:0809.2596 [hep-th] Search in Google Scholar

[18] M. Torabian, H. U. Yee, J. High Energ. Phys. 0908, 020 (2009) in Google Scholar

[19] A. Rebhan, A. Schmitt, S. A. Stricker, J. High Energ. Phys. 1001, 026 (2010) in Google Scholar

[20] D. T. Son, P. Surowka, Phys. Rev. Lett. 103, 191601 (2009) in Google Scholar PubMed

[21] S. Pu, J. -h. Gao, Q. Wang, Phys. Rev. D 83 (2011) 094017 in Google Scholar

[22] M. Lublinsky, I. Zahed, Phys. Lett. B 684, 119 (2010) in Google Scholar

[23] D. E. Kharzeev, L. D. McLerran, H. J. Warringa, Nucl. Phys. A 803, 227 (2008) in Google Scholar

[24] K. Fukushima, et al. Phys. Rev. D 78, 074033 (2008) in Google Scholar

[25] K. Fukushima, et al. Phys. Rev. Lett. 104, 212001 (2010) in Google Scholar PubMed

[26] D. E. Kharzeev, D. T. Son, arXiv:1010.0038 [hep-ph] Search in Google Scholar

[27] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 103, 251601 (2009) in Google Scholar PubMed

[28] O. Rogachevsky, A. Sorin, O. Teryaev, Phys. Rev. C 82, 054910 (2010) in Google Scholar

[29] A. V. Sadofyev, M. V. Isachenkov, Phys. Lett. B 697, 404 (2011) in Google Scholar

[30] I. Amado, K. Landsteiner, F. Pena-Benitez, arXiv:1102.4577 [hep-th] Search in Google Scholar

[31] T. Kalaydzhyan, I. Kirsch, arXiv:1102.4334 [hep-th] Search in Google Scholar

[32] S. Pu, arXiv:1108.5828 [hep-ph] Search in Google Scholar

Published Online: 2012-12-4
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow