Abstract
A composite of CaTi0.9Fe0.1O3 and electrolyte material, i.e. magnesium doped La0.98Mg0.02NbO4 was prepared and studied. The phase content and the sample microstructure was examined by an X-ray diffraction method and scanning electron microscopy. EDS measurements were done both for composite samples and the diffusion couple. The electrical properties were studied by four terminal DC method. The high-temperature interaction between the two components of the composite has been observed. It has been suggested that lanthanum diffused into the perovskite phase and substituted for calcium whereas calcium and niobium formed the Ca2Nb2O7 pyrochlore phase. At 1500°C very large crystallites of the pyrochlore were observed. Regardless of strong interaction between the composite components, its total conductivity was weakly dependent on the sintering temperature.
[1] L. Cindrella et al., J. Power Sources 194, 146 (2009) http://dx.doi.org/10.1016/j.jpowsour.2009.04.00510.1016/j.jpowsour.2009.04.005Search in Google Scholar
[2] J.E. Elshof, H.J.M. Bouwmeester, H. Verweij, Appl. Catal. A-Gen. 30, 195 (1995) http://dx.doi.org/10.1016/0926-860X(95)00098-410.1016/0926-860X(95)00098-4Search in Google Scholar
[3] S.M. Haile, Acta Mater. 51, 5981 (2003) http://dx.doi.org/10.1016/j.actamat.2003.08.00410.1016/j.actamat.2003.08.004Search in Google Scholar
[4] A. Magraso et al., Fuel Cells 11, 17 (2011) http://dx.doi.org/10.1002/fuce.20100005210.1002/fuce.201000052Search in Google Scholar
[5] F.M. Figueiredo, V.V. Kharton, J.C. Waerenborgh, A.P. Viskup, E.N. Naumovich, J.R. Frade, J. Am. Ceram. Soc. 87, 2252 (2004) http://dx.doi.org/10.1111/j.1151-2916.2004.tb07501.x10.1111/j.1151-2916.2004.tb07501.xSearch in Google Scholar
[6] L.A. Donyushkina, A.K. Demin, B.V. Zhuravlev, Solid State Ionics 116, 85 (1999) http://dx.doi.org/10.1016/S0167-2738(98)00197-010.1016/S0167-2738(98)00197-0Search in Google Scholar
[7] F.M. Figueiredo, V.V. Kharton, A.P. Viskup, J.R. Frade, J. Membrane Sci. 236, 73 (2004) http://dx.doi.org/10.1016/j.memsci.2004.02.00810.1016/j.memsci.2004.02.008Search in Google Scholar
[8] T. Mokkelbost, H.L. Lein, P.E. Vullum, R. Holmestad, T. Grande, M.-A. Einarsrud, Ceram. Int. 35, 2877 (2009) http://dx.doi.org/10.1016/j.ceramint.2009.03.04110.1016/j.ceramint.2009.03.041Search in Google Scholar
[9] L.A. Dunyushkina, A.V. Kuzmin, V.B. Balakireva, V.P. Gorelov, Russ. J. Electrochem+. 42, 375 (2006) http://dx.doi.org/10.1134/S102319350604014810.1134/S1023193506040148Search in Google Scholar
[10] T. Lendze A. Mielewczyk-Gryn, K. Gdula, B. Kusz, M. Gazda, Advances in Materials Sciences 1, 55 (2011) Search in Google Scholar
[11] A. Mielewczyk-Gryn, K. Gdula, T. Lendze, B. Kusz, M. Gazda, Cryst. Res. Technol. 12, 1225 (2010) http://dx.doi.org/10.1002/crat.20100037810.1002/crat.201000378Search in Google Scholar
[12] X. Liu, R.C. Liebermann, Phys. Chem. Miner. 20, 171 (1993) http://dx.doi.org/10.1007/BF0020011910.1007/BF00200119Search in Google Scholar
[13] S. Tsunekawa, T. Kamiyama, K. Sasaki, H. Asano, T. Fakuda, Acta Crystallogr. A 49, 595 (1993) http://dx.doi.org/10.1107/S010876739201303510.1107/S0108767392013035Search in Google Scholar
[14] J.T. Lewandowski, I.J. Pickering, Mater. Res. Bull. 27, 981 (1992) http://dx.doi.org/10.1016/0025-5408(92)90199-A10.1016/0025-5408(92)90199-ASearch in Google Scholar
[15] D.A.G. Bruggeman, Ann. Phys.-Berlin 416, 636 (1935) http://dx.doi.org/10.1002/andp.1935416070510.1002/andp.19354160705Search in Google Scholar
[16] V. Vashook, L. Vasylechko, M. Knapp, H. Ullmann, U. Guth, J. Alloy. Compd. 354, 13 (2003) http://dx.doi.org/10.1016/S0925-8388(02)01345-210.1016/S0925-8388(02)01345-2Search in Google Scholar
[17] R.S. Roth et al., J. Solid State Chem. 181, 406 (2008) http://dx.doi.org/10.1016/j.jssc.2007.12.00510.1016/j.jssc.2007.12.005Search in Google Scholar
[18] M. Baurer, S.-J. Shih, C. Bishop, M.P. Harmer, D. Cockayne, M.J. Hoffmann, Acta Mater. 58, 290 (2010) http://dx.doi.org/10.1016/j.actamat.2009.09.00710.1016/j.actamat.2009.09.007Search in Google Scholar
[19] S.H. Yoon, Y.-S. Park, J.-Oh Hong, D.-S. Sinn, J. Mater. Res. 22, 2539 (2007) http://dx.doi.org/10.1557/jmr.2007.032610.1557/jmr.2007.0326Search in Google Scholar
[20] S.C. Hopkins, Ph.D. thesis, Sidney Sussex College, (Cambridge, United Kingdom, 2007) Search in Google Scholar
[21] P.A. Miles, W.B. Westphal, V.A. Hippel, Rev. Mod. Phys. 29, 279 (1957) http://dx.doi.org/10.1103/RevModPhys.29.27910.1103/RevModPhys.29.279Search in Google Scholar
[22] A. Fursina, Ph.D. thesis, Rice University, (Texas, USA, 2010) Search in Google Scholar
[23] C. Gleitzer, J.B. Goodenough, Struct. Bond. 6, 1 (1985) http://dx.doi.org/10.1007/BFb011119210.1007/BFb0111192Search in Google Scholar
[24] A. Mielewczyk-Gryn, K. Gdula, S. Molin, P. Jasinski, B. Kusz, M. Gazda, J. Non-Cryst. Solids 356, 1976 (2010) http://dx.doi.org/10.1016/j.jnoncrysol.2010.05.06810.1016/j.jnoncrysol.2010.05.068Search in Google Scholar
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.