Abstract
We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach.
[1] D. Horn, M. Weinstein, Phys. Rev. D 30, 1256 (1984) http://dx.doi.org/10.1103/PhysRevD.30.125610.1103/PhysRevD.30.1256Search in Google Scholar
[2] D. Horn, M. Karliner, M. Weinstein, Phys. Rev. D 31, 2589 (1985) http://dx.doi.org/10.1103/PhysRevD.31.258910.1103/PhysRevD.31.2589Search in Google Scholar
[3] J. Cioslowski, Phys. Rev. Lett. 58, 83 (1987) http://dx.doi.org/10.1103/PhysRevLett.58.8310.1103/PhysRevLett.58.83Search in Google Scholar PubMed
[4] C. Stubbins, Phys. Rev. D 38, 1942 (1988) http://dx.doi.org/10.1103/PhysRevD.38.194210.1103/PhysRevD.38.1942Search in Google Scholar
[5] P. Knowles, Chem. Phys. Lett. 134, 512 (1987) http://dx.doi.org/10.1016/0009-2614(87)87184-110.1016/0009-2614(87)87184-1Search in Google Scholar
[6] P. Amore, F. M. Fernández, M. Rodriguez, J. Phys. A 44, 505302 (2011) http://dx.doi.org/10.1088/1751-8113/44/50/50530210.1088/1751-8113/44/50/505302Search in Google Scholar
[7] F. M. Fernández, Int. J. Quantum Chem. 109, 717 (2009) http://dx.doi.org/10.1002/qua.2185410.1002/qua.21854Search in Google Scholar
[8] I. Bartashevich, Int. J. Quantum Chem. 108, 272 (2008) http://dx.doi.org/10.1002/qua.2149810.1002/qua.21498Search in Google Scholar
[9] J. Cioslowski, Phys. Rev. A 36, 3441 (1987) http://dx.doi.org/10.1103/PhysRevA.36.344110.1103/PhysRevA.36.3441Search in Google Scholar PubMed
[10] J. Cioslowski, Chem. Phys. Lett. 136, 515 (1987) http://dx.doi.org/10.1016/0009-2614(87)80509-210.1016/0009-2614(87)80509-2Search in Google Scholar
[11] V. Fessatidis, J. D. Mancini, S. P. Bowen, M. Campuzano, J. Math. Chem. 44, 20 (2008) http://dx.doi.org/10.1007/s10910-007-9289-810.1007/s10910-007-9289-8Search in Google Scholar
© 2013 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.