Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 15, 2013

An eighth-order KdV-type equation in (1+1) and (2+1) dimensions: multiple soliton solutions

  • Abdul-Majid Wazwaz EMAIL logo
From the journal Open Physics

Abstract

In this work we study an eighth-order KdV-type equations in (1+1) and (2+1) dimensions. The new equations are derived from the KdV6 hierarchy. We show that these equations give multiple soliton solutions the same as the multiple soliton solutions of the KdV6 hierarchy except for the dispersion relations.

[1] W. Hereman, A. Nuseir, Math. Comput. Simulat. 43, 13 (1997) http://dx.doi.org/10.1016/S0378-4754(96)00053-510.1016/S0378-4754(96)00053-5Search in Google Scholar

[2] A.S. Fokas, Stud. Appl. Math. 77, 253 (1987) 10.1002/sapm1987773253Search in Google Scholar

[3] P.J. Olver, J. Math. Phys. 18, 1212 (1977) http://dx.doi.org/10.1063/1.52339310.1063/1.523393Search in Google Scholar

[4] B.A. Kupershmidt, Phys. Lett. A 372, 2634 (2008) http://dx.doi.org/10.1016/j.physleta.2007.12.01910.1016/j.physleta.2007.12.019Search in Google Scholar

[5] X. Geng, B. Xue, Appl. Math. Comput. (in press) Search in Google Scholar

[6] R. Hirota, The Direct Method in Soliton Theory, (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO978051154304310.1017/CBO9780511543043Search in Google Scholar

[7] R. Hirota, Phys. Rev. Lett. 27, 1192 (1971) http://dx.doi.org/10.1103/PhysRevLett.27.119210.1103/PhysRevLett.27.1192Search in Google Scholar

[8] J. Hietarinta, J. Math. Phys. 28, 1732 (1987) http://dx.doi.org/10.1063/1.52781510.1063/1.527815Search in Google Scholar

[9] J. Hietarinta, J. Math. Phys. 28, 2094 (1987) http://dx.doi.org/10.1063/1.52742110.1063/1.527421Search in Google Scholar

[10] C.M. Khalique, A. Biswas, Phys. Lett. A 373, 2047 (2009) http://dx.doi.org/10.1016/j.physleta.2009.04.01110.1016/j.physleta.2009.04.011Search in Google Scholar

[11] K.R. Adem, C.M. Khalique, Nonlinear. Anal.-Real 13, 1692 (2012) http://dx.doi.org/10.1016/j.nonrwa.2011.12.00110.1016/j.nonrwa.2011.12.001Search in Google Scholar

[12] A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theorem, (Springer and HEP, Berlin, 2009) http://dx.doi.org/10.1007/978-3-642-00251-910.1007/978-3-642-00251-9Search in Google Scholar

[13] A.M. Wazwaz, Appl. Math. Comput. 204, 963 (2008) http://dx.doi.org/10.1016/j.amc.2008.08.00710.1016/j.amc.2008.08.007Search in Google Scholar

[14] A.M. Wazwaz, Commun. Nonlinear. Sci. 15, 1466 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.06.02410.1016/j.cnsns.2009.06.024Search in Google Scholar

[15] A.M. Wazwaz, Can. J. Phys. 87, 1227 (2010) http://dx.doi.org/10.1139/P09-10910.1139/P09-109Search in Google Scholar

[16] A.M. Wazwaz, Appl. Math. Comput. 199, 133 (2008) http://dx.doi.org/10.1016/j.amc.2007.09.03410.1016/j.amc.2007.09.034Search in Google Scholar

[17] A.M. Wazwaz, Appl. Math. Comput. 200, 437 (2008) http://dx.doi.org/10.1016/j.amc.2007.11.03210.1016/j.amc.2007.11.032Search in Google Scholar

[18] A.M. Wazwaz, Appl. Math. Comput. 201, 168 (2008) http://dx.doi.org/10.1016/j.amc.2007.12.00910.1016/j.amc.2007.12.009Search in Google Scholar

[19] A.M. Wazwaz, Appl. Math. Comput. 201, 489 (2008) http://dx.doi.org/10.1016/j.amc.2007.12.03710.1016/j.amc.2007.12.037Search in Google Scholar

[20] A.M. Wazwaz, Appl. Math. Comput. 201, 790 (2008) http://dx.doi.org/10.1016/j.amc.2008.01.01710.1016/j.amc.2008.01.017Search in Google Scholar

Published Online: 2013-1-15
Published in Print: 2013-1-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.6.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0156-2/html
Scroll to top button