Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 15, 2013

Symmetric M-theory backgrounds

  • José Figueroa-O’Farrill EMAIL logo
From the journal Open Physics

Abstract

We classify symmetric backgrounds of eleven-dimensional supergravity up to local isometry. In other words, we classify triples (M, g, F), where (M,g) is an eleven-dimensional lorentzian locally symmetric space and F is an invariant 4-form, satisfying the equations of motion of eleven-dimensional supergravity. The possible (M,g) are given either by (not necessarily nondegenerate) Cahen-Wallach spaces or by products AdSd × M11−d for 2 ⩽ d ⩽ 7 and M11−d a not necessarily irreducible riemannian symmetric space. In most cases we determine the corresponding F-moduli spaces.

[1] J.M. Figueroa-O’Farrill, P. Meessen, S. Philip, Classical Quant. Grav. 22, 207 (2005) http://dx.doi.org/10.1088/0264-9381/22/1/01410.1088/0264-9381/22/1/014Search in Google Scholar

[2] J.M. Figueroa-O’Farrill, E. Hackett-Jones, G. Moutsopoulos, Classical Quant. Grav. 24, 3291 (2007) http://dx.doi.org/10.1088/0264-9381/24/13/01010.1088/0264-9381/24/13/010Search in Google Scholar

[3] J. Figueroa-O’Farrill, N. Hustler, J. High Energy Phys. 10, 14 (2012) http://dx.doi.org/10.1007/JHEP10(2012)01410.1007/JHEP10(2012)014Search in Google Scholar

[4] S. Helgason, Differential geometry, Lie groups, and symmetric spaces (Academic Press, San Diego, 1978) Search in Google Scholar

[5] M. Cahen, N. Wallach, B. Am. Math. Soc. 76, 585 (1970) http://dx.doi.org/10.1090/S0002-9904-1970-12448-X10.1090/S0002-9904-1970-12448-XSearch in Google Scholar

[6] M. Cahen, M. Parker, Ann. I. Fourier 27, 251 (1977) http://dx.doi.org/10.5802/aif.64810.5802/aif.648Search in Google Scholar

[7] M. Duff, K. Stelle, Phys. Lett. B 253, 113 (1991) http://dx.doi.org/10.1016/0370-2693(91)91371-210.1016/0370-2693(91)91371-2Search in Google Scholar

[8] M. Duff, B. Nilsson, C. Pope, Phys. Rep. 130, 1 (1986) http://dx.doi.org/10.1016/0370-1573(86)90163-810.1016/0370-1573(86)90163-8Search in Google Scholar

[9] A.L. Besse, Einstein Manifolds (Springer-Verlag, Berlin, 1987) 10.1007/978-3-540-74311-8Search in Google Scholar

[10] J.M. Figueroa-O’Farrill, G. Papadopoulos, J. High Energy Phys. 6, 36 (2001) http://dx.doi.org/10.1088/1126-6708/2001/08/03610.1088/1126-6708/2001/08/036Search in Google Scholar

[11] M. Blau, J.M. Figueroa-O’Farrill, G. Papadopoulos, Classical Quant. Grav. 19, 4753 (2002) http://dx.doi.org/10.1088/0264-9381/19/18/31010.1088/0264-9381/19/18/310Search in Google Scholar

[12] J.P. Gauntlett, C.M. Hull, J. High Energy Phys. 6, 13 (2002) http://dx.doi.org/10.1088/1126-6708/2002/06/01310.1088/1126-6708/2002/06/013Search in Google Scholar

[13] J. Michelson, Classical Quant. Grav. 19, 5935 (2002) http://dx.doi.org/10.1088/0264-9381/19/23/30410.1088/0264-9381/19/23/304Search in Google Scholar

[14] R. Geroch, Commun. Math. Phys. 13, 180 (1969) http://dx.doi.org/10.1007/BF0164548610.1007/BF01645486Search in Google Scholar

[15] S. Philip, J. Geom. Phys. 56, 1516 (2006) http://dx.doi.org/10.1016/j.geomphys.2005.08.00210.1016/j.geomphys.2005.08.002Search in Google Scholar

[16] J.M. Figueroa-O’Farrill, P. Meessen, S. Philip, J. High Energy Phys. 5, 50 (2005) http://dx.doi.org/10.1088/1126-6708/2005/05/05010.1088/1126-6708/2005/05/050Search in Google Scholar

[17] L. Castellani, L. Romans, N. Warner, Nucl. Phys. B 241, 429 (1984) http://dx.doi.org/10.1016/0550-3213(84)90055-510.1016/0550-3213(84)90055-5Search in Google Scholar

Published Online: 2013-1-15
Published in Print: 2013-1-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.3.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0160-6/html
Scroll Up Arrow