Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 9, 2013

Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aerts’ machine-models

  • Massimiliano Sassoli de Bianchi EMAIL logo
From the journal Open Physics

Abstract

From the beginning of his research, the Belgian physicist Diederik Aerts has shown great creativity in inventing a number of concrete machine-models that have played an important role in the development of general mathematical and conceptual formalisms for the description of the physical reality. These models can also be used to demystify much of the strangeness in the behavior of quantum entities, by allowing to have a peek at what’s going on behind the “quantum scenes,” during a measurement. In this author’s view, the importance of these machine-models, and of the approaches they have originated, have been so far seriously underappreciated by the physics community, despite their success in clarifying many challenges of quantum physics. To fill this gap, and encourage a greater number of researchers to take cognizance of the important work of so-called Geneva-Brussels school, we describe and analyze in this paper two of Aerts’ historical machine-models, whose operations are based on simple breakable elastic bands. The first one, called the spin quantum-machine, is able to replicate the quantum probabilities associated with the spin measurement of a spin-1/2 entity. The second one, called the connected vessels of water model (of which we shall present here an alternative version based on elastics) is able to violate Bell’s inequality, as coincidence measurements on entangled states can do.

[1] J. G. Cramer, Rev. Mod. Phys. 58, 647 (1986) http://dx.doi.org/10.1103/RevModPhys.58.64710.1103/RevModPhys.58.647Search in Google Scholar

[2] R. P. Feynman, The Character of Physical Law (Penguin Books, London, 1992) Search in Google Scholar

[3] W. Heisenberg, Philosophic Problems of Nuclear Science (Pantheon Books, New York, 1952) Search in Google Scholar

[4] M. Sassoli de Bianchi, Found. Sci. 16, 393 (2011) http://dx.doi.org/10.1007/s10699-011-9227-x10.1007/s10699-011-9227-xSearch in Google Scholar

[5] M. Sassoli de Bianchi, Found. Sci. 17, 223 (2012) http://dx.doi.org/10.1007/s10699-011-9233-z10.1007/s10699-011-9233-zSearch in Google Scholar

[6] D. Aerts, In: D. Aerts, J. Broekaert, E. Mathijs (Eds.), The white book of “Einstein meets Magritte” (Kluwer Academic Publishers, Dordrecht, 1999) 129 10.1007/978-94-011-4704-0_9Search in Google Scholar

[7] D. Aerts, In: D. Aerts, J. Broekaert, E. Mathijs (Eds.), The Indigo Book of “Einstein Meets Magritte” (Kluwer Academic Publishers, Dordrecht, 1999) 141 Search in Google Scholar

[8] D. Aerts, J. Math, Phys. 27, 202 (1986) http://dx.doi.org/10.1063/1.52736210.1063/1.527362Search in Google Scholar

[9] D. Aerts, Int. J. Theor. Phys. 34, 1165 (1995) http://dx.doi.org/10.1007/BF0067622710.1007/BF00676227Search in Google Scholar

[10] D. Aerts, In: Elena Castellani (Ed.), Interpreting bodies, classical and quantum objects in modern physics (Princeton University Press, Princeton, 1998) 223 10.1515/9780691222042Search in Google Scholar

[11] D. Aerts, Int. J. Theor. Phys. 32, 2207 (1993) http://dx.doi.org/10.1007/BF0067299310.1007/BF00672993Search in Google Scholar

[12] A. D. O’Connell et al., Nature 464, 697 (2010) http://dx.doi.org/10.1038/nature0896710.1038/nature08967Search in Google Scholar PubMed

[13] D. Aerts, In: J. Mizerski et al. (Eds.), Problems in Quantum Physics II; Gdansk’ 89 (World Scientific Publishing Company, Singapore, 1990) 3 10.1142/9789814540551Search in Google Scholar

[14] D. Aerts, Helv. Phys. Acta 57, 421 (1984) Search in Google Scholar

[15] D. Aerts, In: P. Mittelstaedt, E. W. Stachow (Eds.), Recent Developments in Quantum Logic (Bibliographisches Institut, Mannheim, 1985) 235 Search in Google Scholar

[16] M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974) 151 Search in Google Scholar

[17] D. Aerts, In: A. Blanquiere, S. Diner, G. Lochak (Eds.), Information, Complexity, and Control in Quantum Physics (Springer-Verlag, Wien and New York, 1987) 77 10.1007/978-3-7091-2971-5Search in Google Scholar

[18] D. Aerts, T. Durt, Found. Phys. 24, 1353 (1994) http://dx.doi.org/10.1007/BF0228303710.1007/BF02283037Search in Google Scholar

[19] D. Aerts, T. Durt, In: K. V. Laurikainen, C. Montonen, K. Sunnaborg (Eds.), Proceedings of the International Symposium on the Foundations of Modern Physics, Helsinki, Finland (Editions Frontieres, Gives Sur Yvettes, 1994) 3 Search in Google Scholar

[20] A. M. Gleason, J. Math. Mech. 6, 885 (1957) 10.1512/iumj.1957.6.56050Search in Google Scholar

[21] S. Kochen, E. P. Specker, J. Math. Mech. 17, 59 (1967) 10.1512/iumj.1968.17.17004Search in Google Scholar

[22] D. Aerts, B. Coecke, B. D’Hooghe, F. Valckenborgh, Helv. Phys. Acta 70, 793 (1997) Search in Google Scholar

[23] D. Aerts, S. Aerts, J. Broekaert, L. Gabora, Found. Phys. 30, 1387 (2000) http://dx.doi.org/10.1023/A:102644971654410.1023/A:1026449716544Search in Google Scholar

[24] D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, New York, 1951) Search in Google Scholar

[25] J. S. Bell, In: B. d’Espagnat (Ed.), Proceedings of the International School of Physics “Enrico Fermi,” Course XLIX (Academic Press, New York, 1971) 171 Search in Google Scholar

[26] J. S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1964) 10.1103/PhysicsPhysiqueFizika.1.195Search in Google Scholar

[27] A. Aspect et al., Phys. Rev. Lett. 49, 91 (1982) http://dx.doi.org/10.1103/PhysRevLett.49.9110.1103/PhysRevLett.49.91Search in Google Scholar

[28] A. Aspect, Nature 398, 189 (1999) http://dx.doi.org/10.1038/1829610.1038/18296Search in Google Scholar

[29] S. Aerts, arXiv:quant-ph/0504171 Search in Google Scholar

[30] E. Schroedinger, Naturwissenschaftern 23, 807 (1935) http://dx.doi.org/10.1007/BF0149189110.1007/BF01491891Search in Google Scholar

[31] D. Aerts, Helv. Phys. Acta 64, 1 (1991) Search in Google Scholar

[32] D. Aerts, Int. J. Theor. Phys. 39, 485 (2000) 10.1023/A:1003609031040Search in Google Scholar

[33] M. Sassoli de Bianchi, Found. Sci., DOI: 10.1007/s10699-011-9284-1 10.1007/s10699-011-9284-1Search in Google Scholar

[34] M. Sassoli de Bianchi, Found. Sci. 16, 393 (2011) http://dx.doi.org/10.1007/s10699-011-9227-x10.1007/s10699-011-9227-xSearch in Google Scholar

[35] M. Sassoli de Bianchi, Found. Sci. 17, 223 (2012) http://dx.doi.org/10.1007/s10699-011-9233-z10.1007/s10699-011-9233-zSearch in Google Scholar

[36] D. Aerts, Found. Sci. 14, 361 (2009) http://dx.doi.org/10.1007/s10699-009-9166-y10.1007/s10699-009-9166-ySearch in Google Scholar

[37] D. Aerts, Int. J. Theor. Phys. 49, 2950 (2010) http://dx.doi.org/10.1007/s10773-010-0440-010.1007/s10773-010-0440-0Search in Google Scholar

[38] G. Auletta, M. Fortunato, G. Parisi, Quantum Mechanics (Cambridge University Press, Cambridge, 2009) http://dx.doi.org/10.1017/CBO978051181395510.1017/CBO9780511813955Search in Google Scholar

[39] A. N. Kolmogorov, Foundations of the Theory of Probability (Chelsea Publishing Company, New York, 1956) Search in Google Scholar

[40] D. Salart et. al., Nature 454, 861 (2008) http://dx.doi.org/10.1038/nature0712110.1038/nature07121Search in Google Scholar PubMed

[41] H. P. Hberhard, Nuovo Cimento B 46, 392 (1978) http://dx.doi.org/10.1007/BF0272862810.1007/BF02728628Search in Google Scholar

Published Online: 2013-2-9
Published in Print: 2013-2-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.9.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0164-2/html
Scroll to top button