Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 28, 2013

Method simplifying calculation of coefficients of fractional parentage for translationally invariant shell-model

  • Saulius Mickevičius EMAIL logo , Darius Germanas and Ramutis Kalinauskas
From the journal Open Physics

Abstract

A new procedure for large-scale calculations of the coefficients of fractional parentage (CFP) for many-particle systems is presented. The approach is based on a simple enumeration scheme for antisymmetric N particle states, and we suggest an efficient method for constructing the eigenvectors of two-particle transposition operator $$P_{N_1 ,N}$$ in a subspace where N 1 and N 2 = N − N 1 nucleons basis states are already antisymmetrized. The main result of this paper is that according to permutation operators $$P_{N_1 ,N}$$ eigenvalues we can distinguish totally asymmetrical N particle states from the other states with lower degree of asymmetry.

[1] G. Racah, Phys. Rev. 63, 367 (1943) http://dx.doi.org/10.1103/PhysRev.63.36710.1103/PhysRev.63.367Search in Google Scholar

[2] P.J. Redmond, Proc. R. Soc. London Ser. A 222, 84 (1954) http://dx.doi.org/10.1098/rspa.1954.005410.1098/rspa.1954.0054Search in Google Scholar

[3] A. Deveikis, G.P. Kamuntavicius, Lith. J. Phys. 35, 14 (1995) Search in Google Scholar

[4] A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Ann. Phys-New York 296, 287 (2002) http://dx.doi.org/10.1006/aphy.2002.622910.1006/aphy.2002.6229Search in Google Scholar

[5] C.R. Sarma, A.V.V. Nampoothiri, J. Comput. Chem. 21, 185 (2000) http://dx.doi.org/10.1002/(SICI)1096-987X(200002)21:3<185::AID-JCC2>3.0.CO;2-P10.1002/(SICI)1096-987X(200002)21:3<185::AID-JCC2>3.0.CO;2-PSearch in Google Scholar

[6] G.P. Kamuntavicius, A. Mašalaitė, S. Mickevicius, D. Germanas, R.K. Kalinauskas, R. Žemaiciūnienė, Lith. J. Phys. 46, 395 (2006) http://dx.doi.org/10.3952/lithjphys.4641210.3952/lithjphys.46412Search in Google Scholar

[7] M. Hamermesh, Group Theory and its Application to Physics, (Addison-Wesley, New York, 1963) Search in Google Scholar

[8] V. Vanagas, Algebraic Methods in Nuclear Theory, (Mintis, Vilnius, 1971) (in Russian) Search in Google Scholar

[9] G.P. Kamuntavicius, D. Germanas, R.K. Kalinauskas, R. Žemaiciūnienė, Lith. J. Phys. 43, 81 (2003) Search in Google Scholar

[10] G.P. Kamuntavicius, R.K. Kalinauskas, B.R. Barrett, S. Mickevicius, D. Germanas, Nucl. Phys. A 695, 191 (2001) http://dx.doi.org/10.1016/S0375-9474(01)01101-010.1016/S0375-9474(01)01101-0Search in Google Scholar

[11] D. Germanas, R.K. Kalinauskas, G.P. Kamuntavicius, R. Žemaiciūnienė, Lith. J. Phys. 44, 243 (2004) http://dx.doi.org/10.3952/lithjphys.4440110.3952/lithjphys.44401Search in Google Scholar

Published Online: 2013-7-28
Published in Print: 2013-5-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-013-0215-3/html
Scroll to top button