Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 28, 2013

A novel method for non-destructive Compton scatter imaging based on the genetic algorithm

  • Saleh Ashrafi EMAIL logo , Okhtay Jahanbakhsh , Davood Alizadeh and Behrooz Salehpour
From the journal Open Physics


Compton scattering tomography is widely used in numerous applications such as biomedical imaging, nondestructive industrial testing and environmental survey, etc. This paper proposes the use of the genetic algorithm (GA), which utilizes bio-inspired mathematical models, to construct an image of the insides of a test object via the scattered photons, from a voxel within the object. A NaI(Tl) scintillation detector and a 185 MBq 137Cs gamma ray source were used in the experimental measurements. The obtained results show that the proposed GA based method performs well in constructing images of objects.

[1] A. D. Sabharwal, B. S. Sandhu, B. Singh, Radiat. Meas., 44, 411 (2009) in Google Scholar

[2] J. Wang, Y. Wang, Z. Chi, IEE Proc.-Sci. Meas. Technol., 146, 235 (1999) in Google Scholar

[3] G. F. Knoll, Radiation Detection and Measurement, 4th edition, (John Wiley & Sons, 2010) Search in Google Scholar

[4] G. N. Ramachandran, A. V. Lakshminarayanan, Proc. Nat. Acad., Sci. 68, 2236 (1971) in Google Scholar PubMed PubMed Central

[5] H. Barrett, L. Parra, T. White, J. Optical Soc. Amer. A 14, 2914 (1997) in Google Scholar PubMed PubMed Central

[6] L. Parra, H. H. Barrett, J. Nucl.Med., 37, 486 (1996) Search in Google Scholar

[7] T. Tomitani, M. Hirasawa, Phys. Med. Biol., 47, 2129 (2002) in Google Scholar PubMed

[8] S. M. Kim, J. S. Lee, S. J. Lee, IEEE Nucl. Sci. Symp. Conf. Rec., 4, 3070 (2007) Search in Google Scholar

[9] J. Wang, O. M. Omidvar(Ed.), Progress in Neural Networks. (Ablex, Stamford 1994) 319 Search in Google Scholar

[10] P. Borne, D. Popescu, F. Gh. Filip, D. Stefanoiu, Optimization in Engineering Sciences, 11th edition (Wiley-ISTE, Croydon 2012) 10.1002/9781118577899Search in Google Scholar

[11] S. G. Prussin, Nuclear Physics for Application, (WILEY-VCHVerlag GmbH & Co. 2007) Search in Google Scholar

[12] R. D. Evans, The Atomic nucleus, (McGraw-Hill, New-York, 1955) Search in Google Scholar

[13] E. M. A. Hussein, Computed Radiation Imaging Physics and Mathematics of Forward and Inverse Problems, (Elsevier, Waltham 2011) Search in Google Scholar

[14] J. Nocedal, Numerical Optimization, ( Springer-Verlag, New York 1999) in Google Scholar

[15] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, (Addison-Wesley, Reading, MA, 1989) Search in Google Scholar

[16] R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms, 2edition (John Wiley and Sons, Hoboken 2004) 10.1002/0471671746Search in Google Scholar

[17] S. N. Sivanandam, S. N. Deepa, Introduction to Genetic Algorithms (Springer-Verlag, Berlin Heidelberg 2008) Search in Google Scholar

[18] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, (Springer-Verlag, Berlin Heidelberg 2006) Search in Google Scholar

[19] H. Aytug, G. J. Koehler, ORSA J. Comput., 8, 183 (1996) in Google Scholar

[20] C. Cheng, Z. Xu, C. Sui, Opt. Commun., 227, 371 (2003) in Google Scholar

[21] A. B. Djurisic, Opt. Commun., 151, 147 (1998) in Google Scholar

[22] M.B. Saddi, B.S. Sandhu, B. Singh, Ann. Nuc. Energy, 33, 271 (2006) in Google Scholar

[23] G. T. Herman, Image reconstruction for projections, (Demic Press, New York, 1980) 10.1007/3-540-09417-2_1Search in Google Scholar

[24] P. Campisi, K. O. Egiazarian, Blind Image Deconvolution: Theory and Applications, (CRC PressINC, 2007) in Google Scholar

Published Online: 2013-7-28
Published in Print: 2013-5-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 4.12.2023 from
Scroll to top button