Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 19, 2013

Singular fractional evolution differential equations

Mirjana Stojanovic EMAIL logo
From the journal Open Physics

Abstract

We give an existence-uniqueness result for linear and nonlinear time fractional evolution equations with singularities in corresponding norm in extended Colombeau algebra of generalized functions using fractional analog for Duhamel principle. Paper deals with some nonlinear models with singularities appearing in viscoelasticity and in anomalous processes which have met great interest among researchers who consider them as a challenge in recent years.

[1] R. Gorenflo, F. Mainardi, Fractional Calculus; Integral and Differential Equations of fractional order, CISM Lecture notes, In: A. Carpinteri, F. Mainardi (Ed.), Fractals and Fractional Calculus in Continuum mechanics (Springer Verlag, Wien and New York, 1997) 233 10.1007/978-3-7091-2664-6_5Search in Google Scholar

[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, In: J. van Mill (Ed.), North-Holland Mathematics studies 204 (Elsevier, Amsterdam, Netherlands, 2006) Search in Google Scholar

[3] I. Podlubny, Fractional Differential Equations, (Academic Press, San Diego, 1999) Search in Google Scholar

[4] A. V. Chechkin, V. Yu. Gonchar, R. Gorenflo, N. Korabel, I. M. Sokolov, Phys. Rev. E 78, 021111 (2008) http://dx.doi.org/10.1103/PhysRevE.78.02111110.1103/PhysRevE.78.021111Search in Google Scholar PubMed

[5] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, V. Yu. Gonchar, Fract. Calc. Appl. Anal. 6, 259 (2003) Search in Google Scholar

[6] A. V. Chechkin, J. Klafter, I. M. Sokolov, Phys. Rev. E 66, 046129 (2002) http://dx.doi.org/10.1103/PhysRevE.66.04612910.1103/PhysRevE.66.046129Search in Google Scholar PubMed

[7] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, Phys. Rev. E 66, 046129 (2002) http://dx.doi.org/10.1103/PhysRevE.66.04612910.1103/PhysRevE.66.046129Search in Google Scholar

[8] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, J. Phys. A: Math. Gen. 38, L679 (2005) http://dx.doi.org/10.1088/0305-4470/38/42/L0310.1088/0305-4470/38/42/L03Search in Google Scholar

[9] I. M. Sokolov, A. V. Chechkin, J. Klafter, Acta Phys. Polon. 35, 1323 (2004) Search in Google Scholar

[10] V. D. Djordjevic, T. M. Atanackovic, J. Comput. Appl. Math. 222, 701 (2008) http://dx.doi.org/10.1016/j.cam.2007.12.01310.1016/j.cam.2007.12.013Search in Google Scholar

[11] W. Chen, Chaos 16, 023126 (2006) http://dx.doi.org/10.1063/1.220845210.1063/1.2208452Search in Google Scholar PubMed

[12] W. Chen, J. Vib. Control 14, 1651 (2008) http://dx.doi.org/10.1177/107754630708739810.1177/1077546307087398Search in Google Scholar

[13] M. Stojanovic, Nonlinear Anal. 71, 5458 (2009) http://dx.doi.org/10.1016/j.na.2009.04.03410.1016/j.na.2009.04.034Search in Google Scholar

[14] D. Rajter-Ciric, M. Stojanovic, Integr. Transfs. Spec. Funct. 22, 319 (2011) http://dx.doi.org/10.1080/10652469.2010.54104710.1080/10652469.2010.541047Search in Google Scholar

[15] S. Umarov, R. Gorenflo, J. Anal. Appl. 24, 449 (2005) 10.4171/ZAA/1250Search in Google Scholar

[16] M. Stojanovic, Anal. Appl. (Singap.) 10, 439 (2012) http://dx.doi.org/10.1142/S021953051250021210.1142/S0219530512500212Search in Google Scholar

[17] S. Umarov, E. Saydamatov, Fract. Calc. Appl. Anal. 9, 57 (2006) Search in Google Scholar

[18] M. Oberguggenberger, Integr. Transfs. Spec. Funct. 17, 101 (2006) http://dx.doi.org/10.1080/1065246050043660110.1080/10652460500436601Search in Google Scholar

[19] S. Pilipovic, M. Stojanovic, Nonlinear Anal. 37, 319 (1999) http://dx.doi.org/10.1016/S0362-546X(98)00050-910.1016/S0362-546X(98)00050-9Search in Google Scholar

[20] H. A. Biagioni, L. Caddedu, T. Gramchev, Diff. Integr. Equat. 12N5, 613 (1999) Search in Google Scholar

[21] M. Nedeljkov, S. Pilipovic, D. Rajter, Proc. Roy. Soc. Edingburgh 135 A, 863 (2005) http://dx.doi.org/10.1017/S030821050000416910.1017/S0308210500004169Search in Google Scholar

[22] J. F. Colombeau, Multiplications of Distributions: A tool in mathematics, numerical engineering and theoretical physics (Springer-Verlag, Berlin and New York, 1992) 10.1007/BFb0088954Search in Google Scholar

[23] S. Pilipovic, Colombeau Generalized Functions and Pseudo-differential Operators, (Lecture in Mathematical Science, The University of Tokyo, 1994) Search in Google Scholar

[24] M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer, Geometric Generalized Functions with Applications to General Relativity, (Mathematics and its Applications, Kluwer, 2001) 537 http://dx.doi.org/10.1007/978-94-015-9845-310.1007/978-94-015-9845-3Search in Google Scholar

[25] H. A. Biagioni, M. Oberguggenberger, SIAM J. Math. Anal. 23, 923 (1992) http://dx.doi.org/10.1137/052304910.1137/0523049Search in Google Scholar

[26] M. Oberguggenberger, arXiv:math/0612445v1 [math.AP] Search in Google Scholar

[27] Yu. A. Dubinskij, Russian Math. Surveys 37, 109 (1982) http://dx.doi.org/10.1070/RM1982v037n05ABEH00401210.1070/RM1982v037n05ABEH004012Search in Google Scholar

[28] R. Gorenflo, Yu. F. Luchko, S. R. Umarov, Fract. Calc. Appl. Anal. 3, 249 (2000) Search in Google Scholar

[29] M. Stojanovic, Fract. Calc. Appl. Anal. 13, 21 (2010) Search in Google Scholar

Published Online: 2013-12-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.2.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-013-0260-y/html
Scroll Up Arrow