Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 20, 2013

Finite size effects in epidemic spreading: the problem of overpopulated systems

  • Wojciech Ganczarek EMAIL logo
From the journal Open Physics

Abstract

In this paper we analyze the impact of network size on the dynamics of epidemic spreading. In particular, we investigate the pace of infection in overpopulated systems. In order to do that, we design a model for epidemic spreading on a finite complex network with a restriction to at most one contamination per time step, which can serve as a model for sexually transmitted diseases spreading in some student communes. Because of the highly discrete character of the process, the analysis cannot use the continuous approximation widely exploited for most models. Using a discrete approach, we investigate the epidemic threshold and the quasi-stationary distribution. The main results are two theorems about the mixing time for the process: it scales like the logarithm of the network size and it is proportional to the inverse of the distance from the epidemic threshold.

[1] R. M. Anderson, R. M. May, Infectious Diseases of Humans, Dynamics and Control (Oxford University Press, Oxford, 1992) Search in Google Scholar

[2] M. E. J. Newman, SIAM Rev. 45, 167 (2003) http://dx.doi.org/10.1137/S00361445034248010.1137/S003614450342480Search in Google Scholar

[3] M. Boguñá, C. Castellano, R. Pastor-Satorras, Phys. Rev. Lett. 111, 068701 (2013) http://dx.doi.org/10.1103/PhysRevLett.111.06870110.1103/PhysRevLett.111.068701Search in Google Scholar PubMed

[4] C. Buono, F. Vazquez, P. A. Macri, L. A. Braunstein, Phys. Rev. E 88, 022813 (2013) http://dx.doi.org/10.1103/PhysRevE.88.02281310.1103/PhysRevE.88.022813Search in Google Scholar PubMed

[5] A. S. Mata, S. C. Ferreira, Europhys. Lett. 103, 48003 (2013) http://dx.doi.org/10.1209/0295-5075/103/4800310.1209/0295-5075/103/48003Search in Google Scholar

[6] X.-L. Peng, X.-J. Xu, X. Fu, T. Zhou, Phys. Rev. E 87, 022813 (2013) http://dx.doi.org/10.1103/PhysRevE.87.02281310.1103/PhysRevE.87.022813Search in Google Scholar PubMed

[7] A. S. Saumell-Mendiola, M. Ángeles Serrano, M. Boguñá, Phys. Rev. E 86, 026106 (2012) http://dx.doi.org/10.1103/PhysRevE.86.02610610.1103/PhysRevE.86.026106Search in Google Scholar PubMed

[8] A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008) http://dx.doi.org/10.1017/CBO978051179138310.1017/CBO9780511791383Search in Google Scholar

[9] W. Ganczarek, arXiv:1307.5503 [physics.soc-ph] Search in Google Scholar

[10] R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001) http://dx.doi.org/10.1103/PhysRevLett.86.320010.1103/PhysRevLett.86.3200Search in Google Scholar PubMed

[11] R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO978051161090510.1017/CBO9780511610905Search in Google Scholar

[12] M. Boguñá, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003) http://dx.doi.org/10.1103/PhysRevLett.90.02870110.1103/PhysRevLett.90.028701Search in Google Scholar PubMed

[13] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, Y. Moreno, Europhys. Lett. 89, 38009 (2010) http://dx.doi.org/10.1209/0295-5075/89/3800910.1209/0295-5075/89/38009Search in Google Scholar

[14] M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 68, 036112 (2003) http://dx.doi.org/10.1103/PhysRevE.68.03611210.1103/PhysRevE.68.036112Search in Google Scholar PubMed

[15] Y. Moreno, J. B. Gómez, A. F. Pacheco, Phys. Rev. E 68, 035103 (2003) http://dx.doi.org/10.1103/PhysRevE.68.03510310.1103/PhysRevE.68.035103Search in Google Scholar PubMed

[16] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, J. F. F. Mendes, Phys. Rev. Lett. 109, 128702 (2012) http://dx.doi.org/10.1103/PhysRevLett.109.12870210.1103/PhysRevLett.109.128702Search in Google Scholar PubMed

[17] H. K. Lee, P.-S. Shim, J. D. Noh, Phys. Rev. E 87, 062812 (2013) http://dx.doi.org/10.1103/PhysRevE.87.06281210.1103/PhysRevE.87.062812Search in Google Scholar PubMed

[18] T. Petermann, P. De Los Rios, J. Theor. Biol. 229, 1 (2004) http://dx.doi.org/10.1016/j.jtbi.2004.02.01710.1016/j.jtbi.2004.02.017Search in Google Scholar PubMed

[19] R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 035108(R) (2002) http://dx.doi.org/10.1103/PhysRevE.65.03510810.1103/PhysRevE.65.035108Search in Google Scholar PubMed

[20] T. E. Harris, Ann. Probab. 2, 969 (1974) http://dx.doi.org/10.1214/aop/117699649310.1214/aop/1176996493Search in Google Scholar

[21] M. Boguñá, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 79, 036110 (2009) http://dx.doi.org/10.1103/PhysRevE.79.03611010.1103/PhysRevE.79.036110Search in Google Scholar PubMed

[22] Y. Li, D. Han, J. Stat. Phys. 153, 312 (2013) http://dx.doi.org/10.1007/s10955-013-0832-710.1007/s10955-013-0832-7Search in Google Scholar

[23] G. Odor, EPJ Web of Conferences 44, 04005 (2013) http://dx.doi.org/10.1051/epjconf/2013440400510.1051/epjconf/20134404005Search in Google Scholar

[24] A. Sinclair, Algorithms for random generation and counting: a Markov chain approach (Birkhauser Verlag, Boston-Basel-Berlin, 1993) http://dx.doi.org/10.1007/978-1-4612-0323-010.1007/978-1-4612-0323-0Search in Google Scholar

[25] E. N. Gilbert, Ann. Math. Stat. 30, 1141 (1959) http://dx.doi.org/10.1214/aoms/117770609810.1214/aoms/1177706098Search in Google Scholar

[26] M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002) http://dx.doi.org/10.1103/PhysRevLett.89.20870110.1103/PhysRevLett.89.208701Search in Google Scholar PubMed

[27] D. Shah, Found. Trends Net. 3, 1 (2009) http://dx.doi.org/10.1561/130000001410.1561/1300000014Search in Google Scholar

[28] D. J. Watts, S. H. Strogatz, Nature 393, 440 (1998) http://dx.doi.org/10.1038/3091810.1038/30918Search in Google Scholar PubMed

[29] M. E. J. Newman, Networks: An introduction (Oxford University Press, Oxford, 2011) Search in Google Scholar

[30] A. M. Yaglom, Dokl. Acad. Nauk SSSR 56, 795 (1947) (in Russian) Search in Google Scholar

[31] J. N. Darroch, E. Seneta, J. Appl. Prob. 2, 88 (1965) http://dx.doi.org/10.2307/321187610.2307/3211876Search in Google Scholar

[32] E. Seneta, D. Vere-Jones, J. Appl. Prob. 3, 403 (1966) http://dx.doi.org/10.2307/321212810.2307/3212128Search in Google Scholar

[33] J. N. Darroch, E. Seneta, J. Appl. Prob. 4, 192 (1967) http://dx.doi.org/10.2307/321231110.2307/3212311Search in Google Scholar

[34] R. L. Tweedie, J. Appl. Probab. 35, 517 (1998) http://dx.doi.org/10.1239/jap/103226520110.1239/jap/1032265201Search in Google Scholar

[35] D. J. Daley, Ann. Math. Statist. 40, 532 (1969) http://dx.doi.org/10.1214/aoms/117769772110.1214/aoms/1177697721Search in Google Scholar

[36] M. Buiculescu, J. Appl. Probab. 12, 60 (1975) http://dx.doi.org/10.2307/321240710.2307/3212407Search in Google Scholar

[37] E. A. van Doorn, P. K. Pollett, Eur. J. Oper. Res. 230, 1 (2013) http://dx.doi.org/10.1016/j.ejor.2013.01.03210.1016/j.ejor.2013.01.032Search in Google Scholar

[38] R. S. Sander, S. C. Ferreira, R. Pastor-Satorras, Phys. Rev. E 87, 022820 (2013) http://dx.doi.org/10.1103/PhysRevE.87.02282010.1103/PhysRevE.87.022820Search in Google Scholar

[39] P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulations and Queues (Springer-Verlag, New York, 1999) 10.1007/978-1-4757-3124-8Search in Google Scholar

[40] E. Seneta, Non-negative Matrices and Markov Chains (Springer Science+Business Media, New York, 2006) Search in Google Scholar

[41] F. R. Gantmacher, Applications of the Theory of Matrices (Interscience Publishers, New York, 1959) Search in Google Scholar

[42] L. B. Koralov, Y. G. Sinai, Theory of Probability and Random Processes (Springer-Verlag, Berlin, 2007) http://dx.doi.org/10.1007/978-3-540-68829-710.1007/978-3-540-68829-7Search in Google Scholar

[43] L. A. Breyer, R. O. Roberts, Stoc. Proc. Appl. 84, 177 (1999) http://dx.doi.org/10.1016/S0304-4149(99)00018-610.1016/S0304-4149(99)00018-6Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2013-12-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.5.2023 from https://www.degruyter.com/document/doi/10.2478/s11534-013-0312-3/html
Scroll to top button