Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 23, 2014

Electro-osmotically actuated oscillatory flow of a physiological fluid on a porous microchannel subject to an external AC electric field having dissimilar frequencies

Jagadis Misra and Sukumar Chandra
From the journal Open Physics

Abstract

Electro-osmotic flow of a physiological fluid with prominent micropolar characteristics, flowing over a microchannel has been analyzed for a situation, where the system is subject to the action of an external AC electric field. In order to account for the rotation of the micro-particles suspended in the physiological fluid, the fluid has been treated as a micropolar fluid. The microchannel is considered to be bounded by two porous plates executing oscillatory motion. Such motion of the plates will normally induce oscillatory flow of the fluid. The governing equations of the fluid include a second-order partial differential equation depicting Gauss’s law of electrical charge distributions and two other partial differential equations of second order that arise out of the laws of conservation of linear and angular momenta. These equations have been solved under the sole influence of electrokinetic forces, by using appropriate boundary conditions. This enabled us to determine explicit analytical expressions for the electro-osmotic velocity of the fluid and the microrotation of the suspended micro-particles. These expressions have been used to obtain numerical estimates of important physical variables associated with the oscillatory electro-osmotic flow of a blood sample inside a micro-bio-fluidic device. The numerical results presented in graphical form clearly indicate that the formation of an electrical double layer near the vicinity of the wall causes linear momentum to reduce. In contrast, the angular momentum increases with the enhancement of microrotation of the suspended microparticles. The study will find important applications in the validation of results of further experimental and numerical models pertaining to flow in micro-bio-fluidic devices. It will also be useful in the improvement of the design and construction of various micro-bio-fluidic devices.

[1] V. Srinivasan, V. K. Pamula, R. B. Fair, Lab. Chip 4, 310 (2004) http://dx.doi.org/10.1039/b403341h10.1039/b403341hSearch in Google Scholar PubMed

[2] M. Gad-el-Hak, The MEMS, Handbook (CRC Press, Boca Raton, FL., 2002) 10.1201/9781420050905Search in Google Scholar

[3] H. A. Stone, A. D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004) http://dx.doi.org/10.1146/annurev.fluid.36.050802.12212410.1146/annurev.fluid.36.050802.122124Search in Google Scholar

[4] C. M. Ho, Y. C. Tai, Ann. Review. Fluid Mech. 30, 579 (1998) http://dx.doi.org/10.1146/annurev.fluid.30.1.57910.1146/annurev.fluid.30.1.579Search in Google Scholar

[5] P. Gravesen, J. Branehjerg, O. S. Jensen, J. Micromech. Microeng. 3, 168 (1993) http://dx.doi.org/10.1088/0960-1317/3/4/00210.1088/0960-1317/3/4/002Search in Google Scholar

[6] M. Murugan et. al., Int. J. Nucl. Desalination 2, 172 (2006) http://dx.doi.org/10.1504/IJND.2006.01252110.1504/IJND.2006.012521Search in Google Scholar

[7] A. J. Chung, D. Run, D. Ericson, Lab. Chip 2, 330 (2008) http://dx.doi.org/10.1039/b713325a10.1039/B713325ASearch in Google Scholar

[8] P. Nithiarasu, P. F. Eng, A. K. Arnold, Proc. 5th European Thermal Sciences Conference, 18–22 May 2008, Eindhoven, The Netherlands 10.1145/1279540.1279558Search in Google Scholar

[9] J. G. Santiago, Anal. Chem. 73, 2352 (2001) http://dx.doi.org/10.1021/ac010139810.1021/ac0101398Search in Google Scholar PubMed

[10] E. J. W. Verwey, J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948) Search in Google Scholar

[11] D. Burgreen, F. R. Nakache, J. Phys. Chem. 68, 1084 (1964) http://dx.doi.org/10.1021/j100787a01910.1021/j100787a019Search in Google Scholar

[12] C. L. Rice, R. Whitehead, J. Phys. Chem. 69, 4017 (1965) http://dx.doi.org/10.1021/j100895a06210.1021/j100895a062Search in Google Scholar

[13] S. Levine, J. R. Marriott, G. Neale, N. Epstein, J. Colloid Interf. Sci. 52, 136 (1975) http://dx.doi.org/10.1016/0021-9797(75)90310-010.1016/0021-9797(75)90310-0Search in Google Scholar

[14] R. J. Yang, L. M. Fu and Y. C. Lin, J. Colloid Interf. Sci. 239, 98 (2001) http://dx.doi.org/10.1006/jcis.2001.755110.1006/jcis.2001.7551Search in Google Scholar

[15] H. M. Park, W. M. Lee, Lab. Chip 8, 1163 (2008) http://dx.doi.org/10.1039/b800185e10.1039/b800185eSearch in Google Scholar

[16] M. B. Akgul, M. Pakdemirli, Int. J. Nonlinear Mech. 43, 985 (2008) http://dx.doi.org/10.1016/j.ijnonlinmec.2008.07.00810.1016/j.ijnonlinmec.2008.07.008Search in Google Scholar

[17] C. Zhao, E. Zholkovskij, J. H. Masliyah, C. Yang, J. Colloid Interf. Sci. 326, 503 (2008) http://dx.doi.org/10.1016/j.jcis.2008.06.02810.1016/j.jcis.2008.06.028Search in Google Scholar

[18] J. C. Misra, S. Chakravarty, J. Biomech. 15, 317 (1982) http://dx.doi.org/10.1016/0021-9290(82)90177-410.1016/0021-9290(82)90177-4Search in Google Scholar

[19] J. C. Misra, S. Chakravarty, J. Biomech. 19, 907 (1986) http://dx.doi.org/10.1016/0021-9290(86)90186-710.1016/0021-9290(86)90186-7Search in Google Scholar

[20] J. C. Misra, M. K. Patra, S. C. Misra, J. Biomech. 26, 1129 (1993) http://dx.doi.org/10.1016/S0021-9290(05)80011-910.1016/S0021-9290(05)80011-9Search in Google Scholar

[21] J. C. Misra, G. C. Shit, J. Mech. Med. Biol. 7, 337 (2007) http://dx.doi.org/10.1142/S021951940700230310.1142/S0219519407002303Search in Google Scholar

[22] J. C. Misra, G. C. Shit, ASME J. Appl. Mech. 76, 061006 (2009) http://dx.doi.org/10.1115/1.313044810.1115/1.3130448Search in Google Scholar

[23] J. C. Misra, B. Pal, A. S. Gupta, Math. Mod. Meth. Appl. Sci. 8, 1323 (1998) http://dx.doi.org/10.1142/S021820259800062710.1142/S0218202598000627Search in Google Scholar

[24] J. C. Misra, B. Pal, A. Pal, A. S. Gupta, Int. J. Nonlinear Mech. 36, 731 (2001) http://dx.doi.org/10.1016/S0020-7462(00)00011-110.1016/S0020-7462(00)00011-1Search in Google Scholar

[25] J. C. Misra, G. C. Shit, H. J. Rath, Comput. Fluids 37, 1 (2008) http://dx.doi.org/10.1016/j.compfluid.2006.09.00510.1016/j.compfluid.2006.09.005Search in Google Scholar

[26] J. C. Misra, A. Sinha, G. C. Shit, Appl. Math. Mech. 31, 1405 (2010) http://dx.doi.org/10.1007/s10483-010-1371-610.1007/s10483-010-1371-6Search in Google Scholar

[27] J. C. Misra, A. Sinha, G. C. Shit, J. Mech. Med. Biol. 11, 547 (2011) http://dx.doi.org/10.1142/S021951941000379410.1142/S0219519410003794Search in Google Scholar

[28] J. C. Misra, A. Sinha, G. C. Shit, Int. J. Biomath. 4, 207 (2011) http://dx.doi.org/10.1142/S179352451100142810.1142/S1793524511001428Search in Google Scholar

[29] J. C. Misra, S. K. Pandey, Comput. Math. Appl. 28, 131 (1994) http://dx.doi.org/10.1016/0898-1221(94)00134-010.1016/0898-1221(94)00134-0Search in Google Scholar

[30] J. C. Misra, S. K. Pandey, Math. Comput. Model. 22, 137 (1995) http://dx.doi.org/10.1016/0895-7177(95)00162-U10.1016/0895-7177(95)00162-USearch in Google Scholar

[31] J. C. Misra, S. K. Pandey, Int. J. Eng. Sci. 37, 1841 (1999) http://dx.doi.org/10.1016/S0020-7225(99)00005-110.1016/S0020-7225(99)00005-1Search in Google Scholar

[32] J. C. Misra, S. K. Pandey, Math. Comput. Model. 33, 997 (2001) http://dx.doi.org/10.1016/S0895-7177(00)00295-810.1016/S0895-7177(00)00295-8Search in Google Scholar

[33] J. C. Misra, S. K. Pandey, Int. J. Eng. Sci. 39, 387 (2001) http://dx.doi.org/10.1016/S0020-7225(00)00038-010.1016/S0020-7225(00)00038-0Search in Google Scholar

[34] J. C. Misra, S. K. Pandey, Comput. Math. Appl. 43, 1183 (2002) http://dx.doi.org/10.1016/S0898-1221(02)80022-010.1016/S0898-1221(02)80022-0Search in Google Scholar

[35] J. C. Misra, S. K. Pandey, In: J. C. Misra (Ed.), Int. Biomathematics: Modelling and Simulation (World Scientific Publishing Company, London, USA, Singapore, 2006) 167 Search in Google Scholar

[36] S. Maiti, J. C. Misra, Int. J. Eng. Sci. 49, 950 (2011) http://dx.doi.org/10.1016/j.ijengsci.2011.05.00610.1016/j.ijengsci.2011.05.006Search in Google Scholar

[37] J. C. Misra, S. Maiti, G. C. Shit, J. Mech. Med. Biol. 8, 507 (2008) http://dx.doi.org/10.1142/S021951940800278410.1142/S0219519408002784Search in Google Scholar

[38] J. C. Misra, G. C. Shit, S. Chandra, P. K. Kundu, Appl. Math. Comput. 217, 7932 (2011) http://dx.doi.org/10.1016/j.amc.2011.02.07510.1016/j.amc.2011.02.075Search in Google Scholar

[39] J. C. Misra, S. K. Ghosh, Comput. Math. Appl. 41, 783 (2001) http://dx.doi.org/10.1016/S0898-1221(00)00320-510.1016/S0898-1221(00)00320-5Search in Google Scholar

[40] J. C. Misra, S. Chandra, G. C. Shit, P. K. Kundu, J. Mech. Med. Biol. 13, 1350013 (2013) http://dx.doi.org/10.1142/S021951941350013910.1142/S0219519413500139Search in Google Scholar

[41] A. C. Eringen, Int. J. Eng. Sci. 2, 205 (1964) http://dx.doi.org/10.1016/0020-7225(64)90005-910.1016/0020-7225(64)90005-9Search in Google Scholar

[42] A. C. Eringen, J. Math. Mech. 16, 1 (1966) 10.1512/iumj.1967.16.16001Search in Google Scholar

[43] T. Ariman, M. A. Turk, N. D. Sylvester, Int. J. Eng. Sci. 11, 905 (1973) http://dx.doi.org/10.1016/0020-7225(73)90038-410.1016/0020-7225(73)90038-4Search in Google Scholar

[44] T. Ariman, M. A. Turk, N. D. Sylvester, ASME J. Appl. Mech. 41, 1 (1974) http://dx.doi.org/10.1115/1.342322410.1115/1.3423224Search in Google Scholar

[45] A. A. Siddiqui, A. Lakhtakia, Proc. R. Soc. A, 465, 501 (2009) http://dx.doi.org/10.1098/rspa.2008.035410.1098/rspa.2008.0354Search in Google Scholar

[46] A. A. Siddiqui, A. Lakhtakia, J. Phys. A: Math. Theor. 42, 35 (2009) http://dx.doi.org/10.1088/1751-8113/42/35/35550110.1088/1751-8113/42/35/355501Search in Google Scholar

[47] G. Ahmadi, Int. J. Eng. Sci. 14, 639 (1976) http://dx.doi.org/10.1016/0020-7225(76)90006-910.1016/0020-7225(76)90006-9Search in Google Scholar

[48] D. Li, Electrokinetics in Microfluidics, 2 (Elsevier, London, 2004) Search in Google Scholar

[49] R. F. Probestein, Physicochemical Hydrodynamics: An introduction, Second Edn (Butterworths, Boston, 1989) Search in Google Scholar

[50] C. P. Chin, H. M. Chou, Acta Mech. 101, 161 (1993) http://dx.doi.org/10.1007/BF0117560410.1007/BF01175604Search in Google Scholar

[51] D. A. Rees, A. P. Bassom, Int. J. Eng. Sci. 34, 113 (1996) http://dx.doi.org/10.1016/0020-7225(95)00058-510.1016/0020-7225(95)00058-5Search in Google Scholar

[52] H. E. Hegab, G. Liu, Proc. SPIE 4177, 257 (2004) http://dx.doi.org/10.1117/12.39567010.1117/12.395670Search in Google Scholar

[53] S. Chandra, Ph. D. Dissertation, Jadavpur University (Kolkata, India, 2012) Search in Google Scholar

Published Online: 2014-4-23
Published in Print: 2014-4-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow