Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 23, 2014

Wong’s equations in Yang-Mills theory

Sergey Storchak EMAIL logo
From the journal Open Physics

Abstract

Wong’s equations for the finite-dimensional dynamical system representing the motion of a scalar particle on a compact Riemannian manifold with a given free isometric smooth action of a compact semi-simple Lie group are derived. The equations obtained are written in terms of dependent coordinates which are typically used in an implicit description of the local dynamics given on the orbit space of the principal fiber bundle. Using these equations, we obtain Wong’s equations in a pure Yang-Mills gauge theory with Coulomb gauge fixing. This result is based on the existing analogy between the reduction procedures performed in a finite-dimensional dynamical system and the reduction procedure in Yang-Mills gauge fields.

[1] S. K. Wong, Il Nuovo Cimento A 65, 689 (1970) http://dx.doi.org/10.1007/BF0289213410.1007/BF02892134Search in Google Scholar

[2] L. S. Brown, W. I. Weisberger, Nucl. Phys. B 157, 285 (1979) http://dx.doi.org/10.1016/0550-3213(79)90508-X10.1016/0550-3213(79)90508-XSearch in Google Scholar

[3] B. P. Kosyakov, Phys. Rev. D 57, 5032 (1998) http://dx.doi.org/10.1103/PhysRevD.57.503210.1103/PhysRevD.57.5032Search in Google Scholar

[4] J. Jalilian-Marian, S. Jeon, R. Venugopalan, Phys. Rev. D 63, 036004 (2001) http://dx.doi.org/10.1103/PhysRevD.63.03600410.1103/PhysRevD.63.036004Search in Google Scholar

[5] J. F. Dawson, B. Mihaila, F. Cooper, Phys. Rev. D 81, 054026 (2010) http://dx.doi.org/10.1103/PhysRevD.81.05402610.1103/PhysRevD.81.054026Search in Google Scholar

[6] Z. Haba, Mod. Phys. Lett. A28, 1350091 (2013) http://dx.doi.org/10.1142/S021773231350091010.1142/S0217732313500910Search in Google Scholar

[7] R. Kerner, Ann. Inst. H. Poincaré 9, 143 (1968) Search in Google Scholar

[8] R. Montgomery, Lett. Math. Phys. 8, 59 (1984) http://dx.doi.org/10.1007/BF0042004210.1007/BF00420042Search in Google Scholar

[9] R. Montgomery, Ph. D. thesis, University of California, (Berkeley, USA, 1986) Search in Google Scholar

[10] C. Duval, P. Horvathy, Ann. Phys. (N.Y.) 142, 10 (1982) http://dx.doi.org/10.1016/0003-4916(82)90226-310.1016/0003-4916(82)90226-3Search in Google Scholar

[11] J. E. Marsden, Lecture on Mechanics, London Math. Soc. Lect. Notes Series 174 (Cambridge University Press, Cambridge, 1992) http://dx.doi.org/10.1017/CBO978051162400110.1017/CBO9780511624001Search in Google Scholar

[12] J. E. Marsden, T. S. Ratiu, J. Scheurle, J. Math. Phys. 41, 3379 (2000) http://dx.doi.org/10.1063/1.53331710.1063/1.533317Search in Google Scholar

[13] S. N. Storchak, J. Phys. A: Math. Gen. 34, 9329 (2001) http://dx.doi.org/10.1088/0305-4470/34/43/31510.1088/0305-4470/34/43/315Search in Google Scholar

[14] S. N. Storchak, Bogolubov transformation in path integral on manifold with a group action (IHEP Preprint 98-1, Protvino, 1998) Search in Google Scholar

[15] S. N. Storchak, Phys. Atom. Nucl. 64, 2199 (2001) http://dx.doi.org/10.1134/1.143292610.1134/1.1432926Search in Google Scholar

[16] S. N. Storchak, J. Phys. A: Math. Gen. 37, 7019 (2004) http://dx.doi.org/10.1088/0305-4470/37/27/01110.1088/0305-4470/37/27/011Search in Google Scholar

[17] S. N. Storchak, J. Geom. Phys. 59, 1155 (2009) http://dx.doi.org/10.1016/j.geomphys.2009.05.00110.1016/j.geomphys.2009.05.001Search in Google Scholar

[18] Y. M. Cho, D. S. Kimm, J. Math. Phys. 30, 1571 (1989) 10.1063/1.528290Search in Google Scholar

[19] Y. M. Cho, Phys. Rev. D 35, 2628 (1987) http://dx.doi.org/10.1103/PhysRevD.35.262810.1103/PhysRevD.35.2628Search in Google Scholar

[20] R. G. Littlejohn, M. Reinsch, Rev. Mod. Phys. 69, 213 (1997) http://dx.doi.org/10.1103/RevModPhys.69.21310.1103/RevModPhys.69.213Search in Google Scholar

[21] A. Z. Jadczyk, Class. Quant. Grav. 1, 517 (1984) http://dx.doi.org/10.1088/0264-9381/1/5/00610.1088/0264-9381/1/5/006Search in Google Scholar

[22] O. Babelon, C. M. Viallet, Phys. Lett. B 85, 246 (1979) http://dx.doi.org/10.1016/0370-2693(79)90589-610.1016/0370-2693(79)90589-6Search in Google Scholar

[23] O. Babelon, C. M. Viallet, Commun. Math. Phys. 81, 515 (1981) http://dx.doi.org/10.1007/BF0120827210.1007/BF01208272Search in Google Scholar

[24] P. K. Mitter, C. M. Viallet, Commun. Math. Phys. 79, 43 (1981) http://dx.doi.org/10.1007/BF0120930710.1007/BF01209307Search in Google Scholar

[25] I. M. Singer, Phisica Scripta 24, 817 (1981) http://dx.doi.org/10.1088/0031-8949/24/5/00210.1088/0031-8949/24/5/002Search in Google Scholar

[26] I. M. Singer, Commun. Math. Phys. 60, 7 (1978) http://dx.doi.org/10.1007/BF0160947110.1007/BF01609471Search in Google Scholar

[27] M. S. Narasimhan, T. R. Ramadas, Commun. Math. Phys. 67, 121 (1979) http://dx.doi.org/10.1007/BF0122136110.1007/BF01221361Search in Google Scholar

[28] D. Groisser, T. H. Parker, J. Diff. Geom. 29, 499 (1989) 10.4310/jdg/1214443061Search in Google Scholar

[29] Yu. P. Soloviev, Geometrical structures on a manifold of interacting gauge fields, In: Global analysis and mathematical physics (Voronezh, Voronezh State University, 1987) 110 (in Russian). Search in Google Scholar

[30] G. C. Rossi, M. Testa, Nucl. Phys. B 163, 109 (1980) http://dx.doi.org/10.1016/0550-3213(80)90393-410.1016/0550-3213(80)90393-4Search in Google Scholar

[31] G. C. Rossi, M. Testa, B 176, 477 (1980) 10.1016/0550-3213(80)90464-2Search in Google Scholar

[32] S. N. Storchak, arXiv: 0711.2910 [hep-th] Search in Google Scholar

[33] G. Kunstatter, Class. Quant. Grav. 9, 1466 (1992) http://dx.doi.org/10.1088/0264-9381/9/6/00510.1088/0264-9381/9/6/005Search in Google Scholar

[34] J. Harnad, J. P. Pareé, Class. Quant. Grav. 8, 1427 (1991) http://dx.doi.org/10.1088/0264-9381/8/8/00910.1088/0264-9381/8/8/009Search in Google Scholar

[35] D. Lukman, N. S. Mankoč Borštink and H. B. Nielsen, New J. Phys. 13, 103027 (2011) http://dx.doi.org/10.1088/1367-2630/13/10/10302710.1088/1367-2630/13/10/103027Search in Google Scholar

[36] T. Mestdag, A Lie algebroid approach to Lagrangian systems with symmetry, In: J. Bures et al. (Eds.), Differential Geometry and its Applications, Proc. Conf. (Prague, Czech Republic, 2005) 523–535. Search in Google Scholar

[37] T. Guhr, S. Keppeler, Annals Phys. 322, 287 (2007) http://dx.doi.org/10.1016/j.aop.2006.09.01010.1016/j.aop.2006.09.010Search in Google Scholar

[38] S. Fabi, G. S. Karatheodoris, arXiv:1104.3970. Search in Google Scholar

[39] S. Fabi, B. Harms, S. Hou, arXiv:1302.0795. Search in Google Scholar

Published Online: 2014-4-23
Published in Print: 2014-4-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.2478/s11534-014-0439-x/html
Scroll Up Arrow