Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 8, 2014

Numerical study of the three-state Ashkin-Teller model with competing dynamics

Prosper Ndizeye EMAIL logo , Felix Hontinfinde , Basile Kounouhewa and Smaine Bekhechi
From the journal Open Physics

Abstract

An open ferromagnetic Ashkin-Teller model with spin variables 0, ±1 is studied by standard Monte Carlo simulations on a square lattice in the presence of competing Glauber and Kawasaki dynamics. The Kawasaki dynamics simulates spin-exchange processes that continuously flow energy into the system from an external source. Our calculations reveal the presence, in the model, of tricritical points where first order and second order transition lines meet. Beyond that, several self-organized phases are detected when Kawasaki dynamics become dominant. Phase diagrams that comprise phase boundaries and stationary states have been determined in the model parameters’ space. In the case where spin-phonon interactions are incorporated in the model Hamiltonian, numerical results indicate that the paramagnetic phase is stabilized and almost all of the self-organized phases are destroyed.

[1] G. Nicolis, I. Prigogine, Self-oganization in Non-Equilibrium Systems (Wiley, New York, 1977) Search in Google Scholar

[2] A. I. López-Lacomba, J. Marro, Phys. Rev. B 46, 8244 (1992) http://dx.doi.org/10.1103/PhysRevB.46.824410.1103/PhysRevB.46.8244Search in Google Scholar PubMed

[3] Liu JiWen, M.A. YuQuiang, Commun. Theor. Phys. (Beijing, China) 32, 305 (1999) 10.1088/0253-6102/32/2/305Search in Google Scholar

[4] P. L. Garrido, J. Marro, Europhys. Lett. 15, 375 (1991) http://dx.doi.org/10.1209/0295-5075/15/4/00210.1209/0295-5075/15/4/002Search in Google Scholar

[5] P. L. Garrido, J. Marro, J. Phys. A 25, 1453 (1992) http://dx.doi.org/10.1088/0305-4470/25/6/00810.1088/0305-4470/25/6/008Search in Google Scholar

[6] H. Haken, Synergetics, 3rd ed. (Springer-Verlag, Berlin, 1983) http://dx.doi.org/10.1007/978-3-642-88338-510.1007/978-3-642-88338-5Search in Google Scholar

[7] B. C. S. Grandi, W. Figueiredo, Phys. Rev. E 56, 5240 (1997) http://dx.doi.org/10.1103/PhysRevE.56.524010.1103/PhysRevE.56.5240Search in Google Scholar

[8] F. Hontinfinde, S. Bekhechi, R. Ferrando, Eur. Phys. J. B 16, 681 (2000). http://dx.doi.org/10.1007/s10051007018610.1007/s100510070186Search in Google Scholar

[9] K. Kawasaki, In Phase Transition and Critical Phenomena, edited by C. Domb, M. S. Green (Academic Press, London 1972), vol. 2. Search in Google Scholar

[10] R. J. Glauber, J. Phys. 4, 294 (1963) 10.1063/1.1703954Search in Google Scholar

[11] T. Tomé, M. J. de Oliveira, Phys. Rev. A 40, 6643 (1989) http://dx.doi.org/10.1103/PhysRevA.40.664310.1103/PhysRevA.40.6643Search in Google Scholar PubMed

[12] S. Bekhechi, A. Benyoussef, B. Ettaki, M. Loulidi, A. El Kenz, F. Hontinfinde, Phys. Rev. E 64, 016134 (2001) http://dx.doi.org/10.1103/PhysRevE.64.01613410.1103/PhysRevE.64.016134Search in Google Scholar PubMed

[13] J. Ashkin, E. Teller, Phys. Rev. 64, 178 (1943) http://dx.doi.org/10.1103/PhysRev.64.17810.1103/PhysRev.64.178Search in Google Scholar

[14] A. B. Bortz, M. H. Kalos, J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975) http://dx.doi.org/10.1016/0021-9991(75)90060-110.1016/0021-9991(75)90060-1Search in Google Scholar

[15] M. Blume, V. J. Emery, R. B. Griffiths, Phys. Rev. A 4, 1071 (1971) http://dx.doi.org/10.1103/PhysRevA.4.107110.1103/PhysRevA.4.1071Search in Google Scholar

[16] T. D. Oke, F. Hontinfinde, K. Boukheddaden, Eur. Phys. J. B 86, 271 (2013) http://dx.doi.org/10.1140/epjb/e2013-30801-510.1140/epjb/e2013-30801-5Search in Google Scholar

Published Online: 2014-5-8
Published in Print: 2014-5-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.2478/s11534-014-0446-y/html
Scroll Up Arrow