Abstract
The paper evaluates the contribution of the electromagnetically induced transparency (EIT) phenomenon to the processes of the microwave background (CMB) formation in early universe. We found the additional function f to the integrated line absorption coefficient. This makes it the necessity to upgrade the Sobolev escape probability: p ij (τ S) → p ij (τ S · (1 + f)). We calculated the magnitude of the function f for different schemes of the hydrogen atom in the three-level approximation in terms of the field parameters. The electric field amplitudes are defined using the CMB distribution. We found that the contribution of f can be significant in some cases.
[1] J. P. Marangos, T. Halfmann, In: M. Bass, G. Li, E.V. Stryland (Eds.), Electromagnetically Induced Transparency, Handbook of Optics, Third Edition, vol. IV, Optical Properties of Materials, Nonlinear Optics (Mc Graw Hill, New York, 2010) 14 Search in Google Scholar
[2] Ya. B. Zel’dovich, V. G. Kurt, R. A. Syunyaev, Zh. Eksp. Teor. Fiz. 55, 278 (1968) Search in Google Scholar
[3] Ya. B. Zel’dovich, V. G. Kurt, R. A. Syunyaev, Sov. Phys. JETP Lett. 28, 146 (1969) Search in Google Scholar
[4] P. J. E. Peebles, Astrophys. J. 153, 1 (1968) http://dx.doi.org/10.1086/14962810.1086/149628Search in Google Scholar
[5] S. Seager, D. D. Sasselov, D. Scott, Astrophys. J. Suppl. Series 128, 407 (2000) http://dx.doi.org/10.1086/31338810.1086/313388Search in Google Scholar
[6] V. V. Sobolev, Sov. Astr.-AJ 1, 678 (1957) Search in Google Scholar
[7] D. Solovyev, V. Dubrovich, G. Plunien, J. Phys. B: At. Mol. Opt. Phys. 45, 215001 (2012) http://dx.doi.org/10.1088/0953-4075/45/21/21500110.1088/0953-4075/45/21/215001Search in Google Scholar
[8] V. K. Dubrovich, S. I. Grachev, Astron. Lett. 31, 359 (2006) http://dx.doi.org/10.1134/1.194010710.1134/1.1940107Search in Google Scholar
[9] A. Lewis, J. Weller, R. Battye, Mon. Not. R. Astron. Soc. 373, 561 (2006) http://dx.doi.org/10.1111/j.1365-2966.2006.10983.x10.1111/j.1365-2966.2006.10983.xSearch in Google Scholar
[10] A. Aspect et al., Phys. Rev. Lett. 61, 826 (1988) http://dx.doi.org/10.1103/PhysRevLett.61.82610.1103/PhysRevLett.61.826Search in Google Scholar PubMed
[11] I. L. Glukhov, E. A. Nekipelov, V. D. Ovsiannikov, J. Phys. B: At. Mol. Opt. Phys. 43, 125002 (2010) http://dx.doi.org/10.1088/0953-4075/43/12/12500210.1088/0953-4075/43/12/125002Search in Google Scholar
[12] T. F. Gallagher, W. E. Cooke, Phys. Rev. Lett. 42, 835 (1979) http://dx.doi.org/10.1103/PhysRevLett.42.83510.1103/PhysRevLett.42.835Search in Google Scholar
[13] J. Weiner, P.-T. Ho, Light-Matter Interaction: Fundamentals and Applications (John Wiley & Sons, Inc., Hoboken, New Jersey, 2003) http://dx.doi.org/10.1002/978352761788310.1002/9783527617883Search in Google Scholar
[14] R. W. Boyd, Nonlinear Optics, Third Edition (Academic Press, Orlando, 2008) 10.1117/1.3115345Search in Google Scholar
[15] R. M. Whitley, R. Stroud, Phys. Rev. A 14, 1498 (1976) http://dx.doi.org/10.1103/PhysRevA.14.149810.1103/PhysRevA.14.1498Search in Google Scholar
[16] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995) http://dx.doi.org/10.1103/PhysRevA.51.57610.1103/PhysRevA.51.576Search in Google Scholar PubMed
[17] S. Wielandy, A. L. Gaeta, Phys. Rev. A 58, 2500 (1998) http://dx.doi.org/10.1103/PhysRevA.58.250010.1103/PhysRevA.58.2500Search in Google Scholar
[18] J. Chluba, J. A. Rubino-Martin, R. A. Sunyaev, Mon. Not. R. Astron. Soc. 374, 1310 (2007) http://dx.doi.org/10.1111/j.1365-2966.2006.11239.x10.1111/j.1365-2966.2006.11239.xSearch in Google Scholar
[19] Y. Ali-Haïmoud, C. Hirata, Phys. Rev. D 82, 063521 (2010) http://dx.doi.org/10.1103/PhysRevD.82.06352110.1103/PhysRevD.82.063521Search in Google Scholar
© 2014 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.