Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 8, 2014

EIT phenomenon for the three-level hydrogen atoms and its application to the era of cosmological recombination

  • Dmitry Solovyev EMAIL logo and Victor Dubrovich
From the journal Open Physics


The paper evaluates the contribution of the electromagnetically induced transparency (EIT) phenomenon to the processes of the microwave background (CMB) formation in early universe. We found the additional function f to the integrated line absorption coefficient. This makes it the necessity to upgrade the Sobolev escape probability: p ij (τ S) → p ij (τ S · (1 + f)). We calculated the magnitude of the function f for different schemes of the hydrogen atom in the three-level approximation in terms of the field parameters. The electric field amplitudes are defined using the CMB distribution. We found that the contribution of f can be significant in some cases.

[1] J. P. Marangos, T. Halfmann, In: M. Bass, G. Li, E.V. Stryland (Eds.), Electromagnetically Induced Transparency, Handbook of Optics, Third Edition, vol. IV, Optical Properties of Materials, Nonlinear Optics (Mc Graw Hill, New York, 2010) 14 Search in Google Scholar

[2] Ya. B. Zel’dovich, V. G. Kurt, R. A. Syunyaev, Zh. Eksp. Teor. Fiz. 55, 278 (1968) Search in Google Scholar

[3] Ya. B. Zel’dovich, V. G. Kurt, R. A. Syunyaev, Sov. Phys. JETP Lett. 28, 146 (1969) Search in Google Scholar

[4] P. J. E. Peebles, Astrophys. J. 153, 1 (1968) in Google Scholar

[5] S. Seager, D. D. Sasselov, D. Scott, Astrophys. J. Suppl. Series 128, 407 (2000) in Google Scholar

[6] V. V. Sobolev, Sov. Astr.-AJ 1, 678 (1957) Search in Google Scholar

[7] D. Solovyev, V. Dubrovich, G. Plunien, J. Phys. B: At. Mol. Opt. Phys. 45, 215001 (2012) in Google Scholar

[8] V. K. Dubrovich, S. I. Grachev, Astron. Lett. 31, 359 (2006) in Google Scholar

[9] A. Lewis, J. Weller, R. Battye, Mon. Not. R. Astron. Soc. 373, 561 (2006) in Google Scholar

[10] A. Aspect et al., Phys. Rev. Lett. 61, 826 (1988) in Google Scholar PubMed

[11] I. L. Glukhov, E. A. Nekipelov, V. D. Ovsiannikov, J. Phys. B: At. Mol. Opt. Phys. 43, 125002 (2010) in Google Scholar

[12] T. F. Gallagher, W. E. Cooke, Phys. Rev. Lett. 42, 835 (1979) in Google Scholar

[13] J. Weiner, P.-T. Ho, Light-Matter Interaction: Fundamentals and Applications (John Wiley & Sons, Inc., Hoboken, New Jersey, 2003) in Google Scholar

[14] R. W. Boyd, Nonlinear Optics, Third Edition (Academic Press, Orlando, 2008) 10.1117/1.3115345Search in Google Scholar

[15] R. M. Whitley, R. Stroud, Phys. Rev. A 14, 1498 (1976) in Google Scholar

[16] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995) in Google Scholar PubMed

[17] S. Wielandy, A. L. Gaeta, Phys. Rev. A 58, 2500 (1998) in Google Scholar

[18] J. Chluba, J. A. Rubino-Martin, R. A. Sunyaev, Mon. Not. R. Astron. Soc. 374, 1310 (2007) in Google Scholar

[19] Y. Ali-Haïmoud, C. Hirata, Phys. Rev. D 82, 063521 (2010) in Google Scholar

Published Online: 2014-5-8
Published in Print: 2014-5-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.2.2023 from
Scroll Up Arrow