Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 8, 2014

The vortex flow caused by sound in a bubbly liquid

Anna Perelomova and Pawel Wojda
From the journal Open Physics

Abstract

Generation of vorticity in the field of intense sound in a bubbly liquid in the free half-space is considered. The reasons for generation of vorticity are nonlinearity, diffraction, and dispersion. Acoustic streaming differs from that in a Newtonian fluid. Under some conditions, the vortex flow changes its direction. Conclusions concern streaming induced by a harmonic or an impulse Gaussian beam.

[1] L. I. Mandelstam, M. A. Leontovich, JETP 7, 438 (1937) Search in Google Scholar

[2] M. Hamilton, Y. Ilinskii, E. Zabolotskaya, In: M. Hamilton, D. Blackstock (eds.), Nonlinear Acoustics (Academic Press, New York, 1998) 151 Search in Google Scholar

[3] S. B. Leble, Nonlinear Waves in Waveguides with Stratification (Springer-Verlag, Berlin, 1991) http://dx.doi.org/10.1007/978-3-642-75420-310.1007/978-3-642-75420-3Search in Google Scholar

[4] L. van Wijngaarden, Acta Appl. Math. 39, 507 (1995) http://dx.doi.org/10.1007/BF0099465210.1007/BF00994652Search in Google Scholar

[5] J. B. Keller, M. Miksis, J. Acoust. Soc. Am. 68, 628 (1980) http://dx.doi.org/10.1121/1.38472010.1121/1.384720Search in Google Scholar

[6] R. I. Nigmatullin, N. S. Khabeev, F. B. Nagiev, Int. J. Heat Mass Transfer 24, 1033 (1981) http://dx.doi.org/10.1016/0017-9310(81)90134-410.1016/0017-9310(81)90134-4Search in Google Scholar

[7] M. Plesset, A. Prosperetti, Ann. Rev. Fluid Mech. 9, 145 (1977) http://dx.doi.org/10.1146/annurev.fl.09.010177.00104510.1146/annurev.fl.09.010177.001045Search in Google Scholar

[8] E. A. Zabolotskaya, S. I. Soluyan, Sov. Phys. Acoust. 18, 396 (1973) Search in Google Scholar

[9] V. P. Kuznetsov, Sov. Phys. Acoust. 16, 467 (1971) Search in Google Scholar

[10] M. Hamilton, V. A. Khokhlova, O. V. Rudenko, J. Acoust. Soc. Am. 101, 1298 (1997) http://dx.doi.org/10.1121/1.41815810.1121/1.418158Search in Google Scholar PubMed

[11] K. E. Frøysa, F. Coulouvrat, J. Acoust. Soc. Am. 99, 3319 (1996) http://dx.doi.org/10.1121/1.41488810.1121/1.414888Search in Google Scholar

[12] P. Marmottant, J. P. Raven, H. Gardeniers, J. G. Bomer, S. Hilgenfeldt, J. Fluid Mech. 568, 109 (2006) http://dx.doi.org/10.1017/S002211200600274610.1017/S0022112006002746Search in Google Scholar

[13] D. Ahmed, X. Mao, J. Shi, B. K. Juluria, T. J. Huang, Lab Chip 9, 2738 (2009) http://dx.doi.org/10.1039/b903687c10.1039/b903687cSearch in Google Scholar PubMed

[14] B. T. Chu, L. S. G. Kovasznay, J. Fluid Mech. 3, 494 (1958) http://dx.doi.org/10.1017/S002211205800014810.1017/S0022112058000148Search in Google Scholar

[15] A. Perelomova, Acta Acust. united Ac. 89, 754 (2003) Search in Google Scholar

[16] A. Perelomova, Acta Acust. united Ac. 96, 43 (2010) http://dx.doi.org/10.3813/AAA.91825410.3813/AAA.918254Search in Google Scholar

[17] A. Perelomova, Can. J. Phys. 88, 293 (2010) http://dx.doi.org/10.1139/P10-01110.1139/P10-011Search in Google Scholar

[18] A. Prosperetti, A. Lezzi, J. Fluid Mech. 168, 457 (1986) http://dx.doi.org/10.1017/S002211208600046010.1017/S0022112086000460Search in Google Scholar

[19] A. Perelomova, Appl. Math. Lett. 13, 93 (2000) http://dx.doi.org/10.1016/S0893-9659(00)00082-310.1016/S0893-9659(00)00082-3Search in Google Scholar

[20] T. G. Leighton, The Acoustic Bubble (Academic Press, New York, 1994) 10.1121/1.410082Search in Google Scholar

[21] T. Kamakura, K. Matsuda, Y. Kumamoto, M. A. Breazeale, J. Acoust. Soc. Am. 97, 2740 (1995) http://dx.doi.org/10.1121/1.41190410.1121/1.411904Search in Google Scholar

[22] S. Kshevetskii, A. Perelomova, Appl. Math. Model. 26, 41 (2002) http://dx.doi.org/10.1016/S0307-904X(01)00038-510.1016/S0307-904X(01)00038-5Search in Google Scholar

Published Online: 2014-5-8
Published in Print: 2014-5-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow