Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 8, 2014

Electrovac universes with a cosmological constant

Nelson Posada-Aguirre EMAIL logo and Davide Batic
From the journal Open Physics

Abstract

We present the extension of the Einstein-Maxwell system called electrovac universes by introducing a cosmological constant Λ. In the absence of the Λ term, the crucial equation in solving the Einstein-Maxwell system is the Laplace equation. The cosmological constant modifies this equation to become in a nonlinear partial differential equation which takes the form ΔU =2ΛU 3. We offer special solutions of this equation.

[1] G. Y. Rainich, T. Am. Math. Soc. 27, 106 (1925) http://dx.doi.org/10.1090/S0002-9947-1925-1501302-610.1090/S0002-9947-1925-1501302-6Search in Google Scholar

[2] C. W. Misner, J. A. Wheeler, Ann. Phys. 2, 525 (1957) http://dx.doi.org/10.1016/0003-4916(57)90049-010.1016/0003-4916(57)90049-0Search in Google Scholar

[3] S. D. Majumdar, Phys. Rev. 72, 390 (1947) http://dx.doi.org/10.1103/PhysRev.72.39010.1103/PhysRev.72.390Search in Google Scholar

[4] A. Papapetrou, Proc. R. Ir. Acad. Sect. A 51, 191 (1947) Search in Google Scholar

[5] J. L. Synge, The General Theory (North-Holland, Amsterdam, 1960) Search in Google Scholar

[6] A. K. Raychaudhuri, S. Banerji, A. Banerjee, General Relativity, Astrophysics and Cosmology (Springer-Verlag, New York, 1992) http://dx.doi.org/10.1007/978-1-4612-2754-010.1007/978-1-4612-2754-0Search in Google Scholar

[7] L. M. Krauss, Astrophys. J. 501, 461 (1998) http://dx.doi.org/10.1086/30584610.1086/305846Search in Google Scholar

[8] S. Perlmutter, M. S. Turner, M. J. White, Phys. Rev. Lett. 83, 670 (1999) http://dx.doi.org/10.1103/PhysRevLett.83.67010.1103/PhysRevLett.83.670Search in Google Scholar

[9] A. G. Riess et al., Astrophys. J. 607, 665 (2004) http://dx.doi.org/10.1086/38361210.1086/383612Search in Google Scholar

[10] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005) http://dx.doi.org/10.1086/46651210.1086/466512Search in Google Scholar

[11] M. Nowakowski, Int. J. Mod. Phys. D 10, 649 (2001) http://dx.doi.org/10.1142/S021827180100118910.1142/S0218271801001189Search in Google Scholar

[12] A. Balaguera-Antolinez, C. G. Boehmer, M. Nowakowski, Class. Quant. Grav. 23, (2006) 485 http://dx.doi.org/10.1088/0264-9381/23/2/01310.1088/0264-9381/23/2/013Search in Google Scholar

[13] J. B. Hartle, Gravity (Addison-Wesley, San Francisco, 2003) Search in Google Scholar

[14] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations (Chapman and Hall, Boca Raton, 2004) 10.1201/9780203489659Search in Google Scholar

[15] A. D. Polyanin, V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (Chapman Adan Hall, Boca Raton, 2003) Search in Google Scholar

Published Online: 2014-5-8
Published in Print: 2014-5-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.2478/s11534-014-0458-7/html
Scroll Up Arrow