Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 20, 2014

Study of the surface relaxation and single vacancy formation in very thin Cu (001) film by using MAEAM

  • Yan-Ni Wen EMAIL logo
From the journal Open Physics

Abstract

The surface relaxation and the formation of a single vacancy in very thin Cu (001) film formed by 2 ∼ 14 atomic layers have been studied by using MAEAM and MD simulation. For the surface relaxtion, the highest surface energy is in the l = 2 atomic layers. The multilayer relaxation mainly occurs between the first two atomic layers, and the maximum contractive displacement is obtained in the very thin Cu (001) film formed by l = 3 atomic layers. For the vacancy formed in l′ = 1 of the very thin Cu (001) film formed by l = 2 ∼ 14 layers, the most difficult site in the film formed by l = 3 atomic layers.

[1] R.W. Hoffman, In: H.G.F. Wilsdorf (Ed), Thin films (Metal Park, OH, American Society for Metals, 1964) Search in Google Scholar

[2] H. Mizubayashi et al., J. Metastab. Nanocryst. 24–25, 61 (2005) http://dx.doi.org/10.4028/www.scientific.net/JMNM.24-25.6110.4028/www.scientific.net/JMNM.24-25.61Search in Google Scholar

[3] N. Yagi et al., J. Metastab. Nanocryst. 24–25, 503 (2005) http://dx.doi.org/10.4028/www.scientific.net/JMNM.24-25.50310.4028/www.scientific.net/JMNM.24-25.503Search in Google Scholar

[4] B.S. Berry, A.C. Pritchet, J. Phys. 42, C5–1111 (1981) 10.1051/jphyscol:19815172Search in Google Scholar

[5] S. Sakai et al., Scripta Mater. 45, 1313 (2001) http://dx.doi.org/10.1016/S1359-6462(01)01167-810.1016/S1359-6462(01)01167-8Search in Google Scholar

[6] M.J. Kobrinsky, C.V. Thompson, J. Appl. Phys. 89, 91 (2001) http://dx.doi.org/10.1063/1.132685610.1063/1.1326856Search in Google Scholar

[7] D. Gan et al., J. Appl. Phys. 97, 103531 (2005) http://dx.doi.org/10.1063/1.190472010.1063/1.1904720Search in Google Scholar

[8] J. Peng et al., Mater. Sci. Forum. 524–525, 595 (2006) http://dx.doi.org/10.4028/www.scientific.net/MSF.524-525.59510.4028/www.scientific.net/MSF.524-525.595Search in Google Scholar

[9] K.N. Tu, J. Appl. Phys. 94, 5451 (2003) http://dx.doi.org/10.1063/1.161126310.1063/1.1611263Search in Google Scholar

[10] C.S. Hau-Riege, Microelectron. Reliab. 44, 195 (2004) http://dx.doi.org/10.1016/j.microrel.2003.10.02010.1016/j.microrel.2003.10.020Search in Google Scholar

[11] W.Y. Hum, M. Fukumoto, Modeling Simu. Mater. Sci. Eng. 10, 707 (2002) http://dx.doi.org/10.1088/0965-0393/10/6/30710.1088/0965-0393/10/6/307Search in Google Scholar

[12] W.Y. Hu et al., J. Phys.: Cond. Matt. 13, 1193 (2001) 10.1088/0953-8984/13/6/302Search in Google Scholar

[13] W.Y. Hu et al., J. Mater. Sci. Tech. 15, 336 (1999) Search in Google Scholar

[14] H.Q. Deng et al., Appl. Surf. Sci. 221, 408 (2004) http://dx.doi.org/10.1016/S0169-4332(03)00946-210.1016/S0169-4332(03)00946-2Search in Google Scholar

[15] R.A. Johnson, Phys. Rev. B 39, 3924 (1988) http://dx.doi.org/10.1103/PhysRevB.37.392410.1103/PhysRevB.37.3924Search in Google Scholar

[16] R.A. Johnson, Phys. Rev. B 39, 12554 (1989) http://dx.doi.org/10.1103/PhysRevB.39.1255410.1103/PhysRevB.39.12554Search in Google Scholar

[17] R.A. Johnson, Phys. Rev. B 41, 9717 (1990) http://dx.doi.org/10.1103/PhysRevB.41.971710.1103/PhysRevB.41.9717Search in Google Scholar

[18] S.M. Foiles et al., Phys. Rev. B 33, 7983 (1986) http://dx.doi.org/10.1103/PhysRevB.33.798310.1103/PhysRevB.33.7983Search in Google Scholar PubMed

[19] S.M. Foiles, M.S. Daw, Phys. Rev. B 38, 12643 (1988) http://dx.doi.org/10.1103/PhysRevB.38.1264310.1103/PhysRevB.38.12643Search in Google Scholar PubMed

[20] F.S. Liu et al., Modelling Simul. Mater. Sci. Eng. 18, 045010 (2010) http://dx.doi.org/10.1088/0965-0393/18/4/04501010.1088/0965-0393/18/4/045010Search in Google Scholar

[21] F.S. Liu et al., Comp. Mater. Sci. 47, 505 (2009) Search in Google Scholar

[22] F.S. Liu et al., Nucl. Instrum. Meth. B 267, 3267 (2009) http://dx.doi.org/10.1016/j.nimb.2009.06.05510.1016/j.nimb.2009.06.055Search in Google Scholar

[23] B.W. Zhang et al., Phys. Rev. B 48, 3022 (1993) 10.1103/PhysRevB.48.3022Search in Google Scholar

[24] B.W. Zhang et al., Phys. B 262, 218 (1999) http://dx.doi.org/10.1016/S0921-4526(98)01156-910.1016/S0921-4526(98)01156-9Search in Google Scholar

[25] X.L. Shu, In:Ph.D. Dissertation(Ed), Study on the physical properties, point defects and atomic diffusion in intermetallics by a modified analytic EAM model (P. R. China, Hunan University, Changsha, 2001) Search in Google Scholar

[26] C.J. Smithells, In: E. A. Brandes(Ed), Smithshells Metals Reference Book (Butterworths, London, 1983) Search in Google Scholar

[27] R.W. Smith, D.J. Srolovitz, Phys. Rev. B 79, 1448 (1996) 10.1063/1.360983Search in Google Scholar

[28] J.R. Beeler Jr, Radiation Effects Computer Experiments (North Holland, New York, 1983) 10.1016/B978-0-444-86315-7.50006-5Search in Google Scholar

[29] T.D. Daff et al., Surf. Sci. 603, 445 (2009) http://dx.doi.org/10.1016/j.susc.2008.11.03110.1016/j.susc.2008.11.031Search in Google Scholar

[30] J. Cai, Y.Y. Ye, Phys. Rev. B 54, 8398 (1996) http://dx.doi.org/10.1103/PhysRevB.54.839810.1103/PhysRevB.54.8398Search in Google Scholar

[31] T.D. Daff et al., J. Phys. Chem. C 113, 15714 (2009) http://dx.doi.org/10.1021/jp904054n10.1021/jp904054nSearch in Google Scholar

[32] H. Cox et al., Mol. Phys. 96, 921 (1998) http://dx.doi.org/10.1080/0026897980948227810.1080/00268979809482278Search in Google Scholar

[33] H.L. Davis, Surf. Sci. 126, 245 (1983) http://dx.doi.org/10.1016/0039-6028(83)90717-310.1016/0039-6028(83)90717-3Search in Google Scholar

Published Online: 2014-7-20
Published in Print: 2014-8-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 20.2.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-014-0489-0/html
Scroll to top button