Abstract
We investigated the diversity of the bacterial 16S rRNA genes occurring on the abdominal setal tufts and in the emptied midgut of the marine mudshrimp Pestarella tyrrhena (Decapoda: Thalassinidea). There were no dominant phylotypes on the setal tufts. The majority of the phylotypes belonged to the phylum Bacteroidetes, frequently occurring in the water column. The rest of the phylotypes were related to anoxygenic photosynthetic α-Proteobacteria and to Actinobacteria. This bacterial profile seems more of a marine assemblage rather than a specific one suggesting that no specific microbial process can be inferred on the setal tufts. In the emptied midgut, 64 clones were attributed to 16 unique phylotypes with the majority (40.6%) belonging to the γ-Proteobacteria, specifically to the genus Vibrio, a marine group with known symbionts of decapods. The next most abundant group was the ɛ-Proteobacteria (28.1%), with members as likely symbionts related to the processes involving redox reactions occurring in the midgut. In addition, phylotypes related to the Spirochaetes (10.9%) were also present, with relatives capable of symbiosis conducting a nitrite associated metabolism. Entomoplasmatales, Bacteroidetes and Actinobacteria related phylotypes were also found. These results indicate a specific bacterial community dominated by putative symbiotic Bacteria within the P. tyrrhena’s midgut.
[1] Felbeck H., Distel L.D., Prokaryotic symbionts of marine invertebrates, In: Dworkin M. et al., (Eds.), The prokaryotes: An evolving electronic resource for the microbiological community, 3rd edition, 2004, release Springer-Verlag, New York Search in Google Scholar
[2] Goffredi S.K., Warén A., Orphan J.V., Van Dover L.C., Vrijenhoek C.R., Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean, Appl. Environ. Microbiol., 2004 70, 3083–3090 http://dx.doi.org/10.1128/AEM.70.5.3082-3090.200410.1128/AEM.70.5.3082-3090.2004Search in Google Scholar
[3] Blazejak A., Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta), MSc Dissertation, Max-Planck-Institut für Marine Mikrobiologie, Bremen, Germany, 2005 Search in Google Scholar
[4] Zbinden M., Cambon-Bonavita M.A., Occurrence of Deferribacterales and Entomoplasmatales in the deep-sea alvinocarid shrimp Rimicaris exoculata gut, FEMS Microbiol. Ecol., 2003, 46, 23–30 http://dx.doi.org/10.1016/S0168-6496(03)00176-410.1016/S0168-6496(03)00176-4Search in Google Scholar
[5] Gregory G., Dimijian M.D., Evolving together: the biology of symbiosis, Part 1, Proc. Bayl. Univ. Med. Cent., 2000, 13, 381–390 10.1080/08998280.2000.11927712Search in Google Scholar PubMed PubMed Central
[6] Amann R.I., Ludwig W., Schleifer K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 1995, 59, 143–169 10.1128/mr.59.1.143-169.1995Search in Google Scholar PubMed PubMed Central
[7] Harris M.J., Seiderer J.L., Lucas I.M., Gut microflora of two saltmarsh detritivore thalassinid prawns, Ubogebia africana and Callianassa kraussi, Microb. Ecol., 1991, 21, 277–296 http://dx.doi.org/10.1007/BF0253915910.1007/BF02539159Search in Google Scholar PubMed
[8] Harris M.J., The presence, nature, and role of gut microflora in aquatic invertebrates: A synthesis, Microb. Ecol., 1993, 25, 195–231 http://dx.doi.org/10.1007/BF0017188910.1007/BF00171889Search in Google Scholar PubMed
[9] Lau W.W.Y., Jumars P.A., Armbrust E.V., Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda: Thalassinidae), Microb. Ecol., 2002, 43, 455–466 http://dx.doi.org/10.1007/s00248-001-1043-310.1007/s00248-001-1043-3Search in Google Scholar PubMed
[10] Gillan D.C., Dubilier N., Novel epibiotic Thiothrix bacterium on a marine amphipod, Appl. Environ. Microbiol., 2004, 70, 3772–3775 http://dx.doi.org/10.1128/AEM.70.6.3772-3775.200410.1128/AEM.70.6.3772-3775.2004Search in Google Scholar PubMed PubMed Central
[11] Payne M.S., Hall M.R., Sly L., Bourne D.G., Microbial diversity within early-stage cultured Panulirus ornatus phyllosomas, Appl. Environ. Microbiol., 2007, 73, 1940–1951 http://dx.doi.org/10.1128/AEM.02520-0610.1128/AEM.02520-06Search in Google Scholar PubMed PubMed Central
[12] Dworschak P.C., The burrows of Callianassa tyrrhena (Petagna, 1792) (Decapoda: Thalassinidea), Mar. Ecol., 2001, 22, 155–166 http://dx.doi.org/10.1046/j.1439-0485.2001.00748.x10.1046/j.1439-0485.2001.00748.xSearch in Google Scholar
[13] Dworschak P.C., Koller H., Abed-Navandii D., Burrow structure, burrowing and feeding behaviour of Corallianassa longiventris and Pestaralla tyrrhena (Crustacea, Thalassinidea, Callianassidae), Mar. Biol., 2005, 148, 1369–1382 http://dx.doi.org/10.1007/s00227-005-0161-810.1007/s00227-005-0161-8Search in Google Scholar
[14] Thessalou-Legaki M., Contribution of the study of ecology and biology of Callianassa tyrrhena (Petagna, 1972) (Crustacea, Decapoda, Thalassinidea), PhD thesis, University of Athens, Athens, Greece, 1987 Search in Google Scholar
[15] Goffredi S.K., Jones W.J., Erhlich H., Apringer A., Vrijenhoek R.C., Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsute, Environ. Microbiol., 2008, 10, 2623–2634 http://dx.doi.org/10.1111/j.1462-2920.2008.01684.x10.1111/j.1462-2920.2008.01684.xSearch in Google Scholar PubMed
[16] Papaspyrou S., Gregersen T., Cox R.P., Thessalou-Legaki M., Kristensen E., Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea), Aquat. Microb. Ecol., 2005, 38, 181–190 http://dx.doi.org/10.3354/ame03818110.3354/ame038181Search in Google Scholar
[17] Maidak B.L., Cole J.R., Lilburn T.G., Parker C.T., Saxman P.R., Farris R.J., et al., The RDP-II (Ribosomal Database Project), Nucl. Acids Res., 2001, 29, 173–174 http://dx.doi.org/10.1093/nar/29.1.17310.1093/nar/29.1.173Search in Google Scholar PubMed PubMed Central
[18] Good I.J., The population frequencies of species and the estimation of population parameters, Biometrika, 1953, 43, 45–63 Search in Google Scholar
[19] Kemp P.F., Aller J.Y. Estimating prokaryotic diversity: When are 16S rDNA libraries large enough?, Limnol. Oceanogr. Methods, 2004, 2, 114–125 10.4319/lom.2004.2.114Search in Google Scholar
[20] Ohkuma M., Noda S., Hongoh Y., Kudo T., Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites, Biosci. Biotechnol. Biochem., 2002, 66, 78–84 http://dx.doi.org/10.1271/bbb.66.7810.1271/bbb.66.78Search in Google Scholar PubMed
[21] Schmitt-Wagner D., Friedrich M., Wagner B., Brune A., Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.), Appl. Environ. Microbiol., 2003, 69, 6007–6017 http://dx.doi.org/10.1128/AEM.69.10.6007-6017.200310.1128/AEM.69.10.6007-6017.2003Search in Google Scholar PubMed PubMed Central
[22] Sears M.A., Gerhart D.J., Rittschof D., Antifouling agents from marine sponge Lissodendoryx isodictyalis carter, J. Chem. Ecol., 1990, 16, 791–799 http://dx.doi.org/10.1007/BF0101648910.1007/BF01016489Search in Google Scholar PubMed
[23] Nedashkovskaya O.I., Kim S.B., Han S.K., Lysenko A.M., Rohde M., Rhee M.S., et al., Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov., Int. J. Syst. Evol. Microbiol., 2004, 54, 1017–1023 http://dx.doi.org/10.1099/ijs.0.02849-010.1099/ijs.0.02849-0Search in Google Scholar PubMed
[24] Brazelton W.J., Schrenk M.O., Kelley D.S., Baross J.A., Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem, Appl. Environ. Microbiol., 2006, 72, 6257–6270 http://dx.doi.org/10.1128/AEM.00574-0610.1128/AEM.00574-06Search in Google Scholar PubMed PubMed Central
[25] Koblížek M., Béjà O., Bidigare R.R., Christensen S., Benitez-Nelson B., Vetriani C., et al., Isolation and characterization of Erythrobacter sp. strains from the upper ocean, Arch. Microbiol., 2003, 180, 327–338 http://dx.doi.org/10.1007/s00203-003-0596-610.1007/s00203-003-0596-6Search in Google Scholar
[26] Green D.H., Llewellyn L.E., Negri A.P., Blackburn S.I., Bolch C.J.S., Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum, FEMS Microbiol. Ecol., 2004, 47, 345–357 http://dx.doi.org/10.1016/S0168-6496(03)00298-810.1016/S0168-6496(03)00298-8Search in Google Scholar
[27] Yurkov V.V., Beatty J.T., Aerobic anoxygenic phototrophic bacteria, Microbiol. Mol. Biol. Rev., 1998, 62, 695–724 10.1128/MMBR.62.3.695-724.1998Search in Google Scholar PubMed PubMed Central
[28] Oxley A.P., Shipton W., Owens L., McKay D., Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis, J. Appl. Microbiol., 2002, 93, 214–223 http://dx.doi.org/10.1046/j.1365-2672.2002.01673.x10.1046/j.1365-2672.2002.01673.xSearch in Google Scholar PubMed
[29] Thompson F.L., Iida T., Swings J., Biodiversity of vibrios, Microbiol. Mol. Biol. Rev., 2004, 68, 403–431 http://dx.doi.org/10.1128/MMBR.68.3.403-431.200410.1128/MMBR.68.3.403-431.2004Search in Google Scholar PubMed PubMed Central
[30] Colwell R.R., Global microbial ecology of Vibrio cholerae, In: Belnkin S., Colwell R.R., (Eds.), Oceans and health: pathogens in the marine environment, Springer, New York, 2005 Search in Google Scholar
[31] Pinn E.H., Rogerson A., Atkinson R.J.A., Microbial flora associated with the digestive system of Upogebia stellata (Crustacea: Decapoda: Thalassinidea), J. Mar. Biol. Ass. U.K., 1997, 77, 1083–1096 http://dx.doi.org/10.1017/S002531540003864910.1017/S0025315400038649Search in Google Scholar
[32] Inagaki F., Takai K., Kobayashi H., Nealson K.H., Horikoshi K., Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ɛ-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough, Int. J. Syst. Evol. Microbiol., 2003, 53, 1801–1804 http://dx.doi.org/10.1099/ijs.0.02682-010.1099/ijs.0.02682-0Search in Google Scholar PubMed
[33] Alain K., Olagnon M., Desbruyères D., Pagé A., Barbier G., Juniper S.K., et al., Phylogenetic characterization of the bacteria assemblage associated with mucus secretions of the hydrothermal vent polychaete Paralvinella palmiforis, FEMS Microbiol. Ecol., 2002, 42, 463–476 http://dx.doi.org/10.1111/j.1574-6941.2002.tb01035.x10.1111/j.1574-6941.2002.tb01035.xSearch in Google Scholar PubMed
[34] Suzuki Y., Kojima S., Sasaki T., Suzuki M., Utsumi T., Watanabe H., et al., Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the Southwest Pacific, Appl. Environ. Microbiol., 2006, 72, 1388–1393 http://dx.doi.org/10.1128/AEM.72.2.1388-1393.200610.1128/AEM.72.2.1388-1393.2006Search in Google Scholar PubMed PubMed Central
[35] Madigan M.T., Martinko J.M., Parker J., Brock biology of microorganisms, 10th edition, 2003, Prentice Hall, Upper Saddle River Search in Google Scholar
[36] Breznak J.A., Leadbetter J.R., Termite gut spirochaetes, Prokaryotes, 2006, 7, 318–329 http://dx.doi.org/10.1007/0-387-30747-8_1110.1007/0-387-30747-8_11Search in Google Scholar
[37] Dubilier N., Amann R., Erseus C., Muyzer G., Park S.Y., Giere O., et al., Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olavius loisae (Annelida), Mar. Ecol. Progr. Ser., 1999, 178, 271–280 http://dx.doi.org/10.3354/meps17827110.3354/meps178271Search in Google Scholar
[38] Alain K., Olagnon M., Desbruyères D., Pagé A., Barbier G., Juniper S.K., et al., Phylogenetic characterization of the bacteria assemblage associated with mucus secretions of the hydrothermal vent polychaete Paralvinella palmiforis, FEMS Microbiol. Ecol., 2002, 42, 463–476 http://dx.doi.org/10.1111/j.1574-6941.2002.tb01035.x10.1111/j.1574-6941.2002.tb01035.xSearch in Google Scholar PubMed
[39] Campbell B.J., Summer Engel A., Porter M.L., Takai K., The versatile ɛ-proteobacteria: key players in sulphidic habitats, Nat. Rev. Microbiol., 2006, 4, 458–468 http://dx.doi.org/10.1038/nrmicro141410.1038/nrmicro1414Search in Google Scholar PubMed
[40] Pikuta E., Lysenko A., Chuvilskaya N., Mendrock U., Hippe H., Suzina N., et al., Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov., Int. J. Syst. Evol. Microbiol., 2000, 50, 2109–2117 10.1099/00207713-50-6-2109Search in Google Scholar PubMed
[41] Jones R.T., McCormick K.F., Martin A.P., Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns, Appl. Environ. Microbiol., 2008, 74, 1667–1670 http://dx.doi.org/10.1128/AEM.02090-0710.1128/AEM.02090-07Search in Google Scholar PubMed PubMed Central
[42] Meziti A., Kormas K.A., Pancucci-Papadopoulou M.A., Thessalou-Legaki M., Bacterial phylotypes associated with the intestinal tract of the sea urchin Paracentrotus lividus and the ascidian Microcosmus sp., Russ. J. Mar. Biol., 2007, 33, 84–91 http://dx.doi.org/10.1134/S106307400702002210.1134/S1063074007020022Search in Google Scholar
© 2009 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.