Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 25, 2011

The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum

  • Jerzy Wielbo EMAIL logo , Dominika Kidaj , Piotr Koper , Agnieszka Kubik-Komar and Anna Skorupska
From the journal Open Life Sciences


[1] Perret X., Staehelin C., Spaink H.P., Molecular basis of symbiotic promiscuity, Microbiol. Mol. Biol. Rev., 2000, 64, 180–201 in Google Scholar PubMed PubMed Central

[2] Jones K.M., Kobayashi H., Davies B.W., Taga M.E., Walker G.C., How symbionts invade plants: the Sinorhizobium-Medicago model, Nat. Rev. Microbiol., 2007, 5, 619–633 in Google Scholar PubMed PubMed Central

[3] Masson-Boivin C., Giraud E., Perret X., Batut J., Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?, Trends Microbiol., 2009, 17, 458–466 in Google Scholar PubMed

[4] Timmers A.C., Soupène E., Auriac M.C., de Billy F., Vasse J., Boistard P., et al., Saprophytic intracellular rhizobia in alfalfa nodules, Mol. Plant-Microbe Interact., 2000, 13, 1204–1213 in Google Scholar PubMed

[5] Mergaert P., Uchiumi T., Alunni B., Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis, Proc. Natl. Acad. Sci. USA, 2006, 103, 5230–5235 in Google Scholar PubMed PubMed Central

[6] Andrade D.S., Murphy P.J., Giller K.J., The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil, Appl. Environ. Microbiol., 2002, 68, 4025–4034 in Google Scholar PubMed PubMed Central

[7] Martyniuk S., Oroń J., Martyniuk M., Diversity and numbers of root-nodule bacteria (rhizobia) in Polish soils, Acta Soc. Bot. Polon., 2005, 74, 83–86 10.5586/asbp.2005.012Search in Google Scholar

[8] Louvrier P., Laguerre G., Amarger N., Distribution of symbiotic genotypes in Rhizobium leguminosarum biovar viciae populations isolated directly from soils, Appl. Environ. Microbiol., 1996, 62, 4202–4205 10.1128/aem.62.11.4202-4205.1996Search in Google Scholar PubMed PubMed Central

[9] Mutch L.A., Young J.P.W., Diversity and specifity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes, Mol. Ecol., 2004, 13, 2435–2444 in Google Scholar PubMed

[10] Silva C., Kan F.L., Martinez-Romero E., Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules Medicago spp. in Mexico, FEMS Microbiol. Ecol., 2007, 60, 477–489 in Google Scholar PubMed

[11] Palmer K.M., Young J.P.W., Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils, Appl. Environ. Microbiol., 2000, 66, 2445–2450 in Google Scholar

[12] Laguerre G., Courde L., Nouaim R., Lamy I., Revellin C., Breuil M.C., et al., Response of rhizobial populations to moderate copper stress applied to an agricultural soil, Microbiol. Ecol., 2006, 52, 426–435 in Google Scholar

[13] Streeter J.G., Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation, Can. J. Microbiol., 1994, 40, 513–522 in Google Scholar

[14] Robertson B.K., Dreyfus B., Alexander M., Ecology of stem-nodulating Rhizobium and Azorhizobium in four vegetation zones of Senegal, Microb. Ecol., 1995, 29, 71–81 in Google Scholar

[15] Fagerli I.L., Svenning M.M., Arctic and subarctic soil populations of Rhizobium leguminosarum biovar trifolii nodulating three different clover species: characterization by diversity of chromosomal and symbiosis loci, Plant Soil, 2005, 275, 371–381 in Google Scholar

[16] Vlassak K.M., Vanderleyden J., Factors influencing nodule occupancy by inoculant rhizobia, Crit. Rev. Plant. Sci., 1997, 16, 163–229 10.1080/07352689709701948Search in Google Scholar

[17] Oresnik I.J., Pacarynuk L.A., O’Brien S.H.P., Yost C., Plasmid-encoded catabolic genes in Rhizobiubium leguminosarum bv. trifolii: evidence for a plasmid-inducible rhamnose locus involved in competition for nodulation, Mol. Plant. Microbe Interact., 1999, 1, 1175–1185 10.1094/MPMI.1998.11.12.1175Search in Google Scholar

[18] Hynes M.F., O’Connel M.P., Host plant effect on competition among strains of Rhizobium leguminosarum, Can. J. Microbiol., 1990, 36, 864–869 in Google Scholar

[19] Wielbo J., Marek-Kozaczuk M., Kubik-Komar A., Skorupska A., Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness, Can. J. Microbiol., 2007, 53, 957–967 in Google Scholar

[20] Wilson R.A., Handley B.A., Beringer J.E., Bacteriocin production and resistance in a field population of Rhizobium leguminosarum bv. viciae, Soil Biol. Biochem., 1998, 30, 413–417 in Google Scholar

[21] Mabood F., Jung W.J., Smith D.L., Signals in the underground: microbial signaling and plant productivity, In: Nautiyal C.S., Dion P.E., Chopra V.L. (Eds.), Molecular mechanisms of plant and microbe coexistence, Springer-Verlag Berlin, Heidelberg, 2008, 291–318 in Google Scholar

[22] Maj D., Wielbo J., Marek-Kozaczuk M., Skorupska A., Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum, Microbiol. Res., 2010, 165, 50–60 in Google Scholar PubMed

[23] Mellor H.Y., Glenn A.R., Dilworth M.J., Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1, Arch. Microbiol., 1987, 148, 34–39 in Google Scholar

[24] Kiers E.T., Rousseau R.A., Denison R.F., Measured sanctions: legume hosts detect quantitative variation in rhizobium cooperation and punish accordingly, Evol. Ecol. Res., 2006, 8, 1077–1086 Search in Google Scholar

[25] Depret G., Laguerre G., Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea, New Phytol., 2008, 179, 224–235 in Google Scholar PubMed

[26] Rangin C., Brunel B., Cleyet-Marel J.C., Perrineau M.M., Bena G., Effect of Medicago truncatula genetic diversity, rhizobial competition and strain effectiveness on the diversity of a natural Sinorhizobium species community, Appl. Environ. Microbiol., 2008, 74, 5653–5661 in Google Scholar PubMed PubMed Central

[27] Lopez-Garcia S.L., Vazquez T.E.E., Favelukes G., Lodeiro L.A., Rhizobial position as a main determinant in the problem of competition for nodulation in soybean, Environ. Microbiol., 2002, 4, 216–224 in Google Scholar PubMed

[28] Gonzalez J.E., Keshavan N.D., Messing with bacterial quorum sensing, Microbiol. Mol. Biol. Rev., 2006, 70, 859–875 in Google Scholar PubMed PubMed Central

[29] Teplitski M., Mathesius U., Rumbaugh K.P., Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells, Chem. Rev., 2011, 111, 100–116 in Google Scholar PubMed

[30] Wielbo J., Marek-Kozaczuk M., Mazur A., Kubik-Komar A., Skorupska A., Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules, Appl. Environ. Microbiol., 2010, 76, 4593–4600 in Google Scholar PubMed PubMed Central

[31] Duodu S., Brophy C., Connolly J., Svenning M.M., Competitiveness of native Rhizobium leguminosarum bv. trifolii strain for nodule occupancy is manifested during infection, Plant Soil, 2009, 318, 117–126 in Google Scholar

[32] Wielbo J., Golus J., Marek-Kozaczuk M., Skorupska A., Symbiosis stage-associated alterations in quorum sensing autoinducer molecules biosynthesis in Sinorhizobium meliloti, Plant Soil, 2010, 329, 399–410 in Google Scholar

[33] Wielbo J., Kuske J., Marek-Kozaczuk M., Skorupska A., The competition between Rhizobium leguminosarum bv. viciae strains progresses until late stages of symbiosis, Plant Soil, 2010, 337, 125–135 in Google Scholar

[34] Jensen E.S., Sorensen L.H., Survival of Rhizobium leguminosarum is soil after addition as inoculant, FEMS Microbiol. Ecol., 1987, 45, 221–226 in Google Scholar

[35] Svenning M.M., Gudmundsson J., Fagerli I.L., Leinonen P., Competition for nodule occupancy between introduced strains of Rhizobium leguminosarum bv. trifolii and its influence on plant production, Annals Botany, 2001, 88, 781–787 in Google Scholar

[36] Wielbo J., Marek-Kozaczuk M., Mazur A., Kubik-Komar A., Skorupska A., The Structure and metabolic diversity of population of pea microsymbionts isolated from root nodules, British Microbiology Research Journal, 2011, 1, 55–69 10.9734/BMRJ/2011/412Search in Google Scholar

[37] Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1989 Search in Google Scholar

[38] Caetano-Anolles G., Crist-Estes D. K., Bauer W. D., Chemotaxis of Rhzobium meliloti to the plant flavone luteolin requires functional nodulation genes, J. Bacteriol., 1998, 7, 3164–3169 10.1128/jb.170.7.3164-3169.1988Search in Google Scholar PubMed PubMed Central

[39] Adler J., A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli, J. Gen. Microbiol., 1973, 74, 77–91 10.1099/00221287-74-1-77Search in Google Scholar PubMed

[40] Palleroni N. J., Chamber for bacterial chemotaxis experiments, Appl. Environ. Microbiol., 1976, 32, 729–730 10.1128/aem.32.5.729-730.1976Search in Google Scholar PubMed PubMed Central

[41] Miller J., Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1972 Search in Google Scholar

[42] Cha C., Gao P., Chen Y.C., Shaw P.D., Farrand S.K., Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plantassociated bacteria, Mol. Plant-Microbe Interact., 1998, 11, 1119–1129 in Google Scholar PubMed

[43] Lithgow J.K., Danino V.E., Jones J., Downie J.A., Analysis of N-acyl homoserine-lactone quorumsensing molecules made by different strains and biovars of Rhizobium leguminosarum containing different symbiotic plasmids, Plant Soil, 2001, 232, 3–12 in Google Scholar

[44] Vincent J.M., A manual for the practical study of root nodule bacteria, International biological program handbook no.15, Blackwell Scientific Publications Ltd, Oxford, 1970 Search in Google Scholar

[45] Gaworzewska E.T., Carlile M.J., Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants, J. Gen. Microbiol., 1982, 128, 1179–1188 10.1099/00221287-128-6-1179Search in Google Scholar

[46] Knee E.M., Gong F.C., Gao M., Teplitski M., Jones A.M., Foxworthy A., et al., Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source, Mol. Plant-Microbe Interact., 2001, 14, 775–784 in Google Scholar

[47] Bertin C., Yang X., Weston L.A., The role of root exudates and allelochemicals in the rhizosphere, Plant Soil, 2003, 256, 67–83 in Google Scholar

[48] Lodwig E., Poole P., Metabolism of Rhizobium bacteroids, CRC Crit. Rev. Plant Sci., 2003, 22, 37–78 in Google Scholar

[49] Zhang F., Smith D.L., Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperatures, Plant Physiol., 1995, 108, 961–968 in Google Scholar

[50] Zhang F., Smith D.L., Inoculation of soybean (Glycine max (L.) Merr.) with genistein-preincubated Bradyrhizobium japonicum or genistein directly applied into soil increases soybean protein and dry matter yield under short season conditions, Plant Soil, 1996, 179, 233–241 in Google Scholar

[51] Zhang F., Smith D.L., Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Adv. Agron., 2002, 76, 125–61 in Google Scholar

[52] Maj D., Wielbo J., Marek-Kozaczuk M., Skorupska A., Pretreatment of clover seeds with Nod factors improves growth and nodulation of Trifolium pretense, J. Chem. Ecol., 2009, 35, 479–487 in Google Scholar PubMed

[53] Gurich N., Gonzalez J.E., Role of quorum sensing in Sinorhizobium meliloti-alfalfa symbiosis, J. Bacteriol., 2009, 191, 4372–4382 in Google Scholar PubMed PubMed Central

[54] Mathesius U., Mulders S., Gao M., Teplitski M., Caetano-Anolles G., Rolfe B.G., et al., Extensive and specific responses of an eukaryote to bacterial quorum-sensing signals, Proc. Natl. Acad. Sci. USA, 2003, 100, 1444–1449 in Google Scholar PubMed PubMed Central

[55] Keshavan N.D., Chowdhary P.K., Haines D.C., Gonzalez J.E., L-canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti, J. Bacteriol., 2005, 187, 8427–8436 in Google Scholar PubMed PubMed Central

[56] Dong Y.H., Xu J.L., Li X.Z., Zhang L.H., Aii, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora, Proc. Natl. Acad. Sci. USA, 2000, 97, 2531–2536 10.1073/pnas.97.7.3526Search in Google Scholar PubMed PubMed Central

[57] Mavridou A., Barny A.M., Poole P., Plaskitt K., Davies A.E., Johnston A.W.B., et al., Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB, Microbiol., 1995, 141, 103–111 in Google Scholar PubMed

[58] Fujishige N.A., Lum M.R., De Hoff P.L., Whitelegge J.P., Faull K.F., Hirsch A.M., Rhizobium common nod genes are required for biofilm formation, Mol. Microbiol., 2008, 67, 504–515 in Google Scholar PubMed

Published Online: 2011-12-25
Published in Print: 2012-2-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.2.2023 from
Scroll Up Arrow