Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 3, 2012

Biologically active secondary metabolites from Actinomycetes

Jolanta Solecka, Joanna Zajko, Magdalena Postek and Aleksandra Rajnisz
From the journal Open Life Sciences


Secondary metabolites obtained from Actinomycetales provide a potential source of many novel compounds with antibacterial, antitumour, antifungal, antiviral, antiparasitic and other properties. The majority of these compounds are widely used as medicines for combating multidrug-resistant Gram-positive and Gram-negative bacterial strains. Members of the genus Streptomyces are profile producers of previously-known secondary metabolites. Actinomycetes have been isolated from terrestrial soils, from the rhizospheres of plant roots, and recently from marine sediments. This review demonstrates the diversity of secondary metabolites produced by actinomycete strains with respect to their chemical structure, biological activity and origin. On the basis of this diversity, this review concludes that the discovery of new bioactive compounds will continue to pose a great challenge for scientists.

[1] Demain A.L., Sanchez S., Microbial drug discovery: 80 years of progress, J. Antibiot., 2009, 62, 5–16 in Google Scholar

[2] Donadio S., Monciardini P., Alduina R., Mazza P., Chiocchini C., Cavaletti L., et al., Microbial technologies for the discovery of novel bioactive metabolites, J. Biotechnol., 2002, 99, 187–198 in Google Scholar

[3] Bérdy J., Bioactive microbial metabolites, J. Antibiot., 2005, 58, 1–26 in Google Scholar PubMed

[4] Lam K.S., New aspects of natural products in drug discovery, Trends in Microbiol., 2007, 15, 279–289 in Google Scholar PubMed

[5] Jensen P.R., Mincer T.J., Williams P.G., Fenical W., Marine actinomycete diversity and natural product discovery, Antonie van Leeuwenhoek, 2005, 87, 43–48 in Google Scholar PubMed

[6] Bull A.T., Stach J.E., Marine actinobacteria: New opportunities for natural product search and discovery, Trends Microbiol., 2007, 15, 491–499 in Google Scholar PubMed

[7] Pimentel-Elardo S.M., Kozytska S., Bugni T.S., Ireland Ch.M., Moll H., Hentschel U., Anti-Parastic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges, Mar. Drugs, 2010, 8, 373–380 in Google Scholar PubMed PubMed Central

[8] Fenical W., Jensen P.R., Developing a new resource for drug discovery: Marine actinomycetebacteria, Nat. Chem. Bol., 2006, 2, 666–673 in Google Scholar PubMed

[9] Penesyan A., Kjelleberg S., Egan S., Development of Novel Drugs from Marine Surface Associated Microorganisms, Mar. Drugs, 2010, 8, 438–459 in Google Scholar PubMed PubMed Central

[10] Blunt J.W., Copp B., Munro M.H., Northcote P.T., Prinsep M.R., Marine natural products, Nat. Prod. Rep., 2010, 27, 165–237 in Google Scholar PubMed

[11] Bhatnagar I., Se-Kwon K., Immense of Excellence: Marine Microbial Bioactive Compounds, Mar. Drugs, 2010, 8, 2673–2701 in Google Scholar PubMed PubMed Central

[12] Simmons T.L., Andrianasolo E., McPhail K., Flatt P., Gerwick W.H., Marine natural products as anticancer drugs, Mol. Canc. Ther., 2005, 4, 333–342 10.1158/1535-7163.333.4.2Search in Google Scholar

[13] Bentley S.D., Chater K.F., Cerdeño-Tárraga A.M., Challis G.L., Thomson N.R., James K.D., et al., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 2002, 417, 141–147 in Google Scholar PubMed

[14] Watve M.G., Tickoo R., Jog M.M., Bhole B.D., How many antibiotics are produced by the genus Streptomyces?, Arch. Microbiol., 2001, 176, 386–390 in Google Scholar PubMed

[15] Ruiz B.R., Forero A., Garcia-Huante Y., Romero A., Sánchez M., Rocha D., et al., Production of microbial secondary metabolites: Regulation by the carbon source, Crit. Rev. Microbiol., 2010, 36, 146–167 in Google Scholar PubMed

[16] Singh M.P., Greenstein M., Antibacterial leads from microbial natural products discovery, Curr. Opin. Drug Discov. Develop., 2000, 3, 167–176 Search in Google Scholar

[17] Demain A.L., Vaishnav P., Involvement of nitrogencontaining compounds in β-lactam biosynthesis and its control, Critical Rev. Biotechnol., 2006, 26, 67–82 in Google Scholar PubMed

[18] Challis G.L., Hopwood D.A., Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species, PNAS, 2003, 100, 14555–14561 in Google Scholar PubMed PubMed Central

[19] Hopwood D.A., Streptomyces In Nature and Medicine. The antibiotic makers, Oxford University Press, 2007 Search in Google Scholar

[20] Duggar B.M., Aureomycin: a product of the continuing search for new antibiotics, Ann. N. Y. Acad. Sc., 1948, 51, 177–181 in Google Scholar PubMed

[21] Cockerill F.R., Wikler M.A., Bush K., Dudley M.N., Eliopoulos G.M., Hardy D.J. et al., Performance Standards for Antimicrobial Susceptibility testing; Twentieth Informational Supplement, Clinical and Laboratory Standards Institute, 2010 Search in Google Scholar

[22] Schatz A., Bugie E., Waksman S.A., Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria, Proc. Soc. Exp. Biol. Med., 1944, 55, 66–69 10.3181/00379727-55-14461Search in Google Scholar

[23] Himbindu M., Annapurna J., Optimization of nutritional requirements for gentamicin production by Micromonospora echinospora, Ind. J. Exper. Biol., 2006, 44, 842–848 Search in Google Scholar

[24] Borodina I., Schöller Ch., Eliason A., Nielsen J., Metabolic Network Analysis of Streptomyces tenebrarius, a Streptomyces Species with an Active Entner-Doudoroff Pathway, Appl. Environ. Microbiol., 2005, 71, 2294–2302 in Google Scholar PubMed PubMed Central

[25] Waksman S.A., Lechevalier H.A., Neomycin, a new antibiotic against streptomycin - resistant bacteria, including tuberculosis organisms, Science, 1949, 109, 305–307 in Google Scholar PubMed

[26] McCormick M.H., Stark W.M., Pittenger G.E., McGuire J.M., Vancomycin, a new antibiotic. I. Chemical and biologic properties, Antibiot. Annu., 1956, 606, 1955–1956 Search in Google Scholar

[27] Parenti F., Beretta G., Berti M., Arioli V., Teichomycin, New antibiotics from Actinoplanes teichomyceticus, nov. sp., 1. Description of the producer strain, fermentation studies and biological properties, J. Antibiot., 1978, 31, 276–281 in Google Scholar

[28] McGuire J.M., Bunch R.L., Anderson R.C., Boaz H.E., Flynn E.H., Powell H.M., et al., “Ilotycin” a new antibiotic, Antibiot. Chemother., 1952, 2, 281–283 Search in Google Scholar

[29] Hazen E.L.; Brown R. Fungicidin, an antibiotic produced by a soil actinomycete. Proc. Soc. Exp. Biol. Med., 1951, 76, 93–97 10.3181/00379727-76-18397Search in Google Scholar

[30] Kirst H.A., Macrolide antibiotics in food-animal health, Expert Opin. Investig. Drugs, 1997, 6, 103–118 in Google Scholar

[31] Hendlin D., Stapley E.O., Jackson M., Wallick H., Miller A.K., Wolf F.J., et al., Phosphonomycin, a new antibiotic produced by strains of Streptomyces, Science, 1969, 166, 122–123 in Google Scholar

[32] Nett M., Ikeda H., Moore B.S., Genomic basis for natural product biosynthetic diversity in the actinomycetes, Nat. Prod. Rep., 2009, 26, 1362–1384 in Google Scholar

[33] Bertasso M., Holzen Kämpfer M., Zeeck A., Dall’Antonia F., Fiedler H.P., Bagremycin A and B, Novel Antibiotics from Streptomyces spTü 4128, J. Antibiot., 2001, 54, 730–736 in Google Scholar

[34] Newman, D.J., Cragg, G.M., Natural products as sources of new drugs over the last 25 years, J. Nat. Prod., 2007, 70, 461–477 in Google Scholar

[35] Demain A.L. History of Industrial Biotechnology. Industrial Biotechnology: Sustainable Growth and Economic Success, Wiley-VCH Verlag GmbH & Co. KGaA, 2010 10.1002/9783527630233.ch1Search in Google Scholar

[36] Garcia-Mendoza C., Studies on the mode of action of etamycin (Viridogrisein), Biochim. Biophys. Acta., 1965, 97, 394–396 in Google Scholar

[37] Haste N.M., Perera V.R., Maloney K.N., Tran D.N., Jensen P., Fenical W., Nizet V., et al., Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus, J. Antibiot., 2010, 63, 219–224 in Google Scholar PubMed PubMed Central

[38] Kitani S., Yamauchi T., Fukshima E., Kwon Lee Ch., Ningsih F., Kinoshita H., et al., Characterization of varM Encoding Type II ABC Transporter in Streptomyces Virginiae, a Virginiamycin M1 Producer, Actinomycetologica, 2010, 24, 51–57 in Google Scholar

[39] Metzger R., Bonatti H., Sawyer R., Future trends in the treatment of serious gram-positive infections, Drugs Today (Barc), 2009, 45, 33–45 in Google Scholar PubMed

[40] Balz R.H., Miao V., Wrigley S.K., Natural products to drugs: daptomycin and related lipopeptide antibiotics, Nat. Prod. Rep., 2005, 22, 717–741 in Google Scholar PubMed

[41] Miao V., Coëffet-LeGal M., Brian P., Brost R., Penn J., Whiting A., et al., Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry, Microbiology, 2005, 151, 1507–1523 in Google Scholar PubMed

[42] Nicolaou K.C., Tria G.S., Edmonds D.J., Kar M., Total Syntheses of (±)-Platencin and (−)-Platencin, J. Am. Chem. Soc., 2009, 131, 15909–15917 in Google Scholar PubMed PubMed Central

[43] Junker B., Walker A., Hesse M., Lester M., Christensen J., Connors N., Actinomycetes scaleup for the production of antibacterial, nocathiacin, Biotechnol.Prog., 2009, 25, 176–188 in Google Scholar PubMed

[44] Zhang C., Zink DL., Ushio M., Burgess B., Onishi R., Masurekar P., et al., Isolation, structure, and antibacterial activity of thiazomycin A, a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa, Bioorg. Med. Chem., 2008, 16, 8818–8823 in Google Scholar PubMed

[45] Singh SB., Occi J., Jayasuriya H., Herath K., Motyl M., Dorso K., et al., Antibacterial evaluations of thiazomycin- a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa, J. Antibiot., 2007, 60, 565–71 in Google Scholar PubMed

[46] Solecka J., Rajnisz A., Laudy A.E., A novel isoquinoline alkaloid, DD-carbxypeptidase inhibitor, with antibacterial aitvity isolated from Streptomyces sp. 8812. Part I: Taxonomy, isolation and biological activities, J. Antibiot., 2009, 62, 575–580 in Google Scholar PubMed

[47] Solecka J., Sitkowski J., Bocian W., Kawęcki R., Kozerski L., A novel isoquinoline alkaloid, DD-carbxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part II: Physicochemical properties and structure elucidation, J. Antibiot., 2009, 62, 581–585 in Google Scholar PubMed

[48] Hashizume H.; Adachi H.; Igarashi M.; Nishimura Y.; Akamats Y. Biological activities of pargamicin A, a novel cyclic peptide antibiotic from Amycolatopsis sp., J. Antibiot., 2010, 63, 279–283 in Google Scholar PubMed

[49] McArthur K.A.; Mitchell S.S.; Tsueng G.; Rheingold A.; White D.J.; Grodberg J., et al., Lynamycins A-E, chlorinated bisindolepyrrole antibiotics from a novel marine actinomycete, J. Nat. Prod., 2008, 71, 1732–1737 in Google Scholar PubMed

[50] Carlson J.C., Li S., Burr D.A., Sherman D.H., Isolation and Characterization of Tirandamycins from Marine-Derived Streptomyces sp., J. Nat. Prod., 2009, 72, 2076–2079 in Google Scholar PubMed PubMed Central

[51] Kwon H.C., Kauffman C.A., Jensen P.R., Fenical W., Marinomycin A-D, antitumour antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”, J. Am. Chem. Soc., 2006, 128, 1622–1632 in Google Scholar PubMed

[52] Roh H., Uguru G.C., Ko H.J., Kim S., Kim B.Y., Goodfellow M., et al, Genome sequence of the abyssomicin- and proximicin-producing marine actinomycete Verrucosispora maris AB-18-032, J. Bacteriol., 2011, 193, 3391–2 in Google Scholar PubMed PubMed Central

[53] Fiedler H.P., Bruntner C., Bull A.T., Ward A.C., Goodfellow M., Potterat O., et al., Marine actinomycetes as a source of novel secondary metabolites, Antonie van Leeuwenhoek, 2005, 87, 37–42 in Google Scholar PubMed

[54] Bister B., Bischoff D., Ströbele M., Riedlinger J., Reicke A., Wolter F., et al., Abyssomycin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway, Angew. Chem. Int. Ed., 2004, 43, 2574–2576 in Google Scholar PubMed

[55] Hohmann C., Schneider K., Bruntner C., Brown R., Jones A.L., Goodfellow M., et al., Albidopyrone, a new α-pyrone-containing metabolite from marinederive Streptomyces sp. NTK 227, J. Antibiot., 2009, 62, 75–79 in Google Scholar PubMed

[56] Huang H., Wu X., Yi S., Zhou Z., Zhu J., Fang Z., et al., Rifamycin S and its geometric isomer produced by a newly found actinomycete, Micromonospora rifamycinica, Antonie van Leeuwenhoek, 2009, 95, 143–148 in Google Scholar PubMed

[57] Xie Y., Xu H., Sun Ch., Yu Y., Chen R., Two novel nucleosidyl-peptide antibiotics: Sansanmycin F and G produced by Streptomyces sp. SS, J. Antibiotic., 2010, 63, 143–146 in Google Scholar PubMed

[58] Tohyama S., Takahashi Y., Akamatsu Y., Biosynthesis of amycolamicin: the biosynthetic origin of a branched α-aminoethyl moiety in the unusual sugar amycolose, J. Antibiot., 2010, 63, 147–149 in Google Scholar PubMed

[59] El-Gendy M.M.A., Hawas U.W., Jaspars M., Novel Bioactive Metabolites from a Marine Derived Bacterium Nocardia sp. ALAA 2000, J. Antibiot., 2008, 61, 379–386 in Google Scholar PubMed

[60] Parry R., Nishino S., Spain J., Naturally-occurring nitro compounds, Nat. Prod. Rep., 2011, 28, 152–167 in Google Scholar

[61] Tee E.H.L., Karoli T., Ramu S., Huang J.X., Butler M.S., Cooper M.A., Synthesis of Essramycin and Comparison of Its Antibacterial Activity, J. Nat. Prod., 2010, 73, 1940–1942 in Google Scholar PubMed

[62] Yu Z., Zhao L.X., Jiang Ch.L., Duan Y., Wong L., Carver K.C., et al., Bafilomycins produced by an endophytic actinomycete Streptomyces sp., YIM56209, J. Antibiot., 2011, 64, 159–162 in Google Scholar PubMed PubMed Central

[63] Werner G., Hagenmaier H., Metabolic products of microorganisms.224, Bafilomycins, a new Group of Macrolide Antibiotics, J. Antibiot., 1984, 37, 110–117 in Google Scholar PubMed

[64] Venkat R.M., Liu J., Sunga M., White D.J., Grodberg J., Teisan S., et al., Lipoxazolidinones A, B and C: Antibacterial 4-Oxazolidinones from a Marine Actinomycete Isolated from a Guam Marione Sediment, J. Nat. Prod., 2007, 70, 1454–1457 in Google Scholar PubMed

[65] Abdalla M.A., Helmke E., Laatsch H., Fujianmycin C, A Bioactive Angucyclinone from a Marine Derived Streptomyces sp. B6219 [1], Nat. Prod. Comm., 2010, 5, 1917–1920 10.1177/1934578X1000501216Search in Google Scholar

[66] Waksman S.A., Woodruff H.B., Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria, J. Bacteriol., 1941, 42, 231–249 10.1128/jb.42.2.231-249.1941Search in Google Scholar PubMed PubMed Central

[67] Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., et al., Adriamycin, 14-Hydroxydaunomycin, a new antitumor antibiotic from Streptomyces peucetius var. caesius, Biotechnol. Bioeng., 1969, 11, 1101–1110 in Google Scholar PubMed

[68] Ishizuka M., Takayama H., Takeuchi T., Umezawa H., Activity and toxicity of bleomycin, J. Antibiot., 1967, 20, 15–24 Search in Google Scholar

[69] Schein P.S., Macdonald J.S., Hot D.W., Wooley P.V., The FAM (5-fluorouracil, adriamycin, mitomycin C) and SMF (streptozotocin, mitomycin C, 5-fluorouracil) chemotherapy regiment, In: Carter S.K., Crooke S.T., Alder N.A. (Eds.), Mitomycin C: Current Status and New Developments, Academic Press, New York, 1979 Search in Google Scholar

[70] Wang Z., Gleichman H., GLUTS2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice, Diabetes, 1998, 47, 50–56 in Google Scholar

[71] Walker S., Landovitz R., Ding W.D., Ellestad G. A., Kahne D., Cleavage behavior of calicheamycin gamma 1 and calicheamycin T., Proc. Natl. Acad. Sci. USA, 1992, 89, 4608–4612 in Google Scholar PubMed PubMed Central

[72] Zhang H., Sun G.S., Li X., Pan H.L., Zhang Y.S., A New Geldanamycin Analogue from Streptomyces hygroscopicus, Molecules, 2010, 15, 1161–1167 in Google Scholar PubMed PubMed Central

[73] Gorajana A., Venkatesan M., Vinjamuri S., Kurada B.V., Peela S., Jangam P., et al., Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7, Microbiol Res., 2007, 162, 322–327 in Google Scholar PubMed

[74] Cho J.Y, Williams P.G., Kwon H.C., Jensen P.R., Fenical W., Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis, J. Nat. Prod., 2007, 70, 1321–1328 in Google Scholar PubMed

[75] Hawas U.W., Shaaban M., Shaaban K.A., Speitling M., Maier A., Ketler G., et al., Mansouramycins A-D, cytotoxic isoquinolinequinones from marine streptomycete, J. Nat. Prod., 2009, 72, 2120–2124 in Google Scholar PubMed

[76] Pérez M., Crespo C., Schleissner C., Rodríguez P., Zúñiga P., Reyes F., Tartrolon D, a cytotoxic macrodiolide from marine-derived actinomycete Streptomyces sp. MDG-04-17-069, J. Nat. Prod., 2009, 72, 2192–2194 in Google Scholar PubMed

[77] Hohmann C., Schneider K., Brutner C., Irran E., Nicholson G., Bull A.T., et al., Carboxamycin, a new antibiotic of the benzoxazole family and phosphodiesterase inhibitor, produced by deep-sea strain Streptomyces sp, NTK 937, J Antibiot., 2009, 62, 99–104 in Google Scholar PubMed

[78] Abdel-Mageed W.M., Milne B.F., Wagner M., Schumacher M., Sandor P., Pathom-aree W., Dermacozines, a new phenazine family from deep sea dermacocci isolated from Mariana Trench sediment, Org. Biomol. Chem., 2010, 8, 2352–2362 in Google Scholar PubMed

[79] Fiedler H-P., Bruntner C., Riedlinger J., Bull A.T., Knutsen G., Goodfellow M., et al., Proximicins A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosipora, J. Antibiot., 2008, 61, 158–163 in Google Scholar PubMed

[80] Izumikawa M., Khan S.T., Komaki H., Takagi M., Shin-ya K., JBIR-31, a new teleocidin analog, produced by salt-requiring Streptomyces sp. NBRC 105896 isolated from a marine sponge, J. Antibiot., 2010, 63, 33–36 in Google Scholar PubMed

[81] Fujiwara T., Nagai A., Takagi M., Shin-ya K., JBIR-69, a new metabolite from Streptomyces sp. OG05, J. Antibiot., 2010, 63, 95–96 in Google Scholar PubMed

[82] Motohashi K., Takagi M., Yamamura H., Hayakawa M., Shin-ya K., A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp., J.Antibiot., 2010, 63, 545–548 in Google Scholar PubMed

[83] Motohashi K., Takagi M., Shin-ya K., Tetracenoquinocin and 5-iminoaranciamycin from a Sponge-Derived Streptomyces sp. SP080513GE-26, J. Nat. Prod., 2010, 73, 755–758 in Google Scholar PubMed

[84] Schneemann I., Kajahn I., Ohlendorf B., Zinecker H., Erhand A., Nagel K., et al., Mayamycin, a Cytotoxic Polyketide from Streptomyces Strain Isolated from Marine Sponge Halichondria Panicea. J. Nat. Prod., 2010, 73, 1309–1312 in Google Scholar PubMed

[85] Trejo W.H., Bennett R.E., Streptomyces nodosus sp. N., the amphotericin - producing organism, J Bacteriol., 1963, 85, 436–439 10.1128/jb.85.2.436-439.1963Search in Google Scholar PubMed PubMed Central

[86] Kimura K., Bugg T.D.H., Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis, Nat. Prod. Rep., 2003, 20, 252–273 in Google Scholar PubMed

[87] Hector R.F., Compounds active against cell walls of medically important fungi, Clin. Microbiol. Rev., 1993, 6, 1–21 10.1128/CMR.6.1.1Search in Google Scholar PubMed PubMed Central

[88] Liao G., Li J., Li L., Yang H., Tian Y., Tan H., Selectively improving nikkomycin Z producton by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes, Microb. Cell Fact., 2009, 8, 61 in Google Scholar PubMed PubMed Central

[89] Yang P.W., Li M.G., Zhao J.Y., Zhu M.Z., Shang H., Li J.R., et al., Oligomycins A and C, major secondary metabolites isolated from the newly isolated strain Streptomyces diastaticus, Folia Microbiol., 2010, 55, 10–16 in Google Scholar PubMed

[90] Sehgal S.N., Baker H., Vézina C., Rapamycin (AY-22989), a new antifungal antibiotic.II Fermentation, isolation and characterization, J. Antibiot., 1975, 28, 727–733 in Google Scholar PubMed

[91] Park S.R., Yoo Y.J., Ban Y.H., Yoon Y.J., Biosynthesis of rapamycin and its regulation: past achievements and recent progress, J. Antibiot., 2010, 63, 434–441 in Google Scholar PubMed

[92] Prapagdee B., Kuekulvong C., Mongkolsuk S., Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi, Int. J. Biol. Sci., 2008, 4, 330–337 in Google Scholar PubMed PubMed Central

[93] Taechowisan T., Chunhua L., Shen Y., Lumyong S., Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity, Microbiol., 2005, 151, 1691–1695 in Google Scholar PubMed

[94] Schleger R., Thrum H., Zielinski J., Borowski E.J., The structure of roflamycin. A new polyene macrolide antifungal antibiotic., J.Antibiot., 1981, 34, 122–123 in Google Scholar PubMed

[95] Wu X., Huang H., Chen G., Sun Q., Peng J., Zhu J., et al., A novel antibiotic produced by Streptomyces noursei Da07210, Antonie van Leeuwenhoek, 2009, 96, 109–112 in Google Scholar PubMed

[96] Kavitha A., Prabhakar P., Vijayalakshmi M., Venkateswarlu Y., Purification and biological evaluation of the metabolites produced by Streptomyces sp TK-VL_333., Res. Microbiol., 2010, 161, 335–345 in Google Scholar PubMed

[97] Mishima H., Ide J., Muramatsu S., Ono M, Milbemycins, a new family of macrolide antibiotics. Structure determination of milbemycins D,E,F,G,H,J and K., J.Antibiotics, 1983, 36, 980–990 in Google Scholar PubMed

[98] Hotson I.K., The avermectins: A new family of antiparasitic agents, J. S. Afr. Vet. Assoc., 1982, 53, 87–90 Search in Google Scholar

[99] Sun Y., Zhou X., Tu G., Deng Z., Identification of a gene cluster encoding meilingmycin biosynthesis among multiple polyketide synthase contigs isolated from Streptomyces nanchangensis NS3226., Arch. Microbiol., 2003, 180, 101–107 in Google Scholar PubMed

[100] Pimentel-Elardo S.M., Buback V., Gulder T.A.M., Bugni T.S., Reppart J., Bringmann G., New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities, Mar. Drugs, 2011, 9, 1682–1697 in Google Scholar PubMed PubMed Central

[101] Niitsuma M., Hashida J., Iwatsuki M., Mori M., Ishiyama A., Namatame M., et al., Sinefungin VA and dehydrosinefungin V, new antitrypanosomal antibiotics produced by Streptomyces sp. K05-0178, J. Antibiot., 2010, 63, 673–679 in Google Scholar PubMed

[102] Takatsuki A., Tamura G., Tunicamycin a new antibiotic. II Some biological properties of the antiviral activity of tunicamycin, J. Antibiot., 1971, 24, 224–231 in Google Scholar

[103] Takagi M., Motohashi K., Nagai A., Izumikawa M., Tanaka M., Fuse S., et al., Anti-influenza virus compound from Streptomyces sp. RI18, Org. Lett., 2010, 12, 4664–4646 in Google Scholar PubMed

[104] Wehmeier U.F, Piepersberg W., Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose, Appl Microbiol Biotechnol., 2004, 63, 613–25 in Google Scholar PubMed

[105] Weibel E. K., Hadvary P., Hochuli E., Kupfer E., Lengsfeld H., Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. Producing organism, Fermentation, Isolation and Biological Activity, J. Antibiot., 1987, 8, 1081–1085 in Google Scholar PubMed

[106] Aggarwala D., Fernandez M. L., Solimanb G.A., Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs, Metabolism, 2006, 55, 794–802 in Google Scholar PubMed

[107] Kino T., Hatanaka, H., Hashimoto, M., Nishiyama, M., Goto, T., Okuhara, et al., FK-506, a novel immunosuppressant isolated from a Streptomyces. Fermentation, isolation, and physiochemical and biological characteristics, J. Antibiot., 1987, 40, 1249–1255 in Google Scholar PubMed

[108] Kirst H.A., The spinosyn family of insecticides: realizing the potential of natural product research., J. Antibiot., 2010, 63, 101–111 in Google Scholar PubMed

[109] Hayakaa M., Yamamura H., Nakagawa Y., Kawa Y., Hayashi Y., Misonou T., et al., Taxonomic diversity of Actinomycetes Isolated from Swine Manure Compost, Actinomycetologica, 2010, 24, 58–62 in Google Scholar

[110] Zhang J., Marcin C., Shifflet M.A., Salmon P., Brix T., Greasham R., et al., Development of a defined medium fermentation process for physostigmine production by Streptomyces griseofuscus, Appl. Microbiol. Biotechnol., 1996, 44, 568–575 in Google Scholar PubMed

[111] Hayakawa Y., Yamazaki Y., Kurita M., Kawasaki T., Takagi M., Shin-ya K., Flaviogeranin, a new neuroprotective compound from Streptomyces sp, J. Antibiot., 2010, 63, 379–380 in Google Scholar PubMed

[112] Motohashi K., Toda T., Sue M., Furihata K., Shizuri Y., Matsuo Y., et al., Isolation and structure elucidation of tumescenamides A and B, two peptides produced by Streptomyces tumescens Ym23-260, J. Antibiot., 2010, 63, 549–552 in Google Scholar PubMed

[113] Baltz R. H., Antimicrobials from Actinomycetes: Back to the Future, Microbe, 2007, 2, 125–131 Search in Google Scholar

Published Online: 2012-4-3
Published in Print: 2012-6-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow