Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 19, 2013

LED irradiance level affects growth and nutritional quality of Brassica microgreens

Giedrė Samuolienė EMAIL logo , Aušra Brazaitytė , Julė Jankauskienė , Akvilė Viršilė , Ramūnas Sirtautas , Algirdas Novičkovas , Sandra Sakalauskienė , Jurga Sakalauskaitė and Pavelas Duchovskis
From the journal Open Life Sciences

Abstract

This study examines the effect of irradiance level produced by solid-state light-emitting diodes (LEDs) on the growth, nutritional quality and antioxidant properties of Brassicaceae family microgreens. Kohlrabi (Brassica oleracea var. gongylodes, ‘Delicacy Purple’) mustard (Brassica juncea L., ‘Red Lion’), red pak choi (Brassica rapa var. chinensis, ‘Rubi F1’) and tatsoi (Brassica rapa var. rosularis) were grown using peat substrate in controlled-environment chambers until harvest time (10 days, 21/17°C, 16 h). A system of five lighting modules with 455, 638, 665 and 731 nm LEDs at a total photosynthetic photon flux densities (PPFD) of 545, 440, 330, 220 and 110 µmol m−2s−1 respectively were used. Insufficient levels of photosynthetically active photon flux (110 µmol m−2 s−1) suppressed normal growth and diminished the nutritional value of the Brassica microgreens studied. In general, the most suitable conditions for growth and nutritional quality of the microgreens was 330–440 µmol m−2 s−1 irradiation, which resulted in a larger leaf surface area, lower content of nitrates and higher total anthocyanins, total phenols and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging capacity. High light levels (545 µmol m−2 s−1), which was expected to induce mild photostress, had no significant positive impact for most of investigated parameters.

[1] Xiao Z., Lester G.E., Luo Y., Wang Q., Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens, J. Agric. Food. Chem., 2012, 60, 7644–7651 http://dx.doi.org/10.1021/jf300459b10.1021/jf300459bSearch in Google Scholar PubMed

[2] Sharma P., Ghimeray A.K., Gurung A., Jin C.W., Rho H.S., Cho D.H., Phenolic contents, antioxidant and α-glucosidase inhibition properties of Nepalese strain buckwheat vegetables, Afr. J. Biotechnol., 2012, 11, 184–190 10.5897/AJB11.2185Search in Google Scholar

[3] Kopsell D.A., Sams C.E., Increase in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes, J. Amer. Soc. Hort. Sci., 2013, 138, 31–37 10.21273/JASHS.138.1.31Search in Google Scholar

[4] Samuolienė G., Urbonavičiūtė A., Brazaitytė A., Šabajevienė G., Sakalauskaitė J., Duchovskis P., The impact of LED illumination on antioxidant properties of sprouted seeds, Cent. Eur. J. Biol., 2011, 6, 68–74 http://dx.doi.org/10.2478/s11535-010-0094-110.2478/s11535-010-0094-1Search in Google Scholar

[5] Samuolienė G., Sirtautas R., Brazaitytė A., Duchovskis P., LED lighting and seasonality effects antioxidant properties of baby leaf lettuce, Food Chem., 2012, 134, 1494–1499 http://dx.doi.org/10.1016/j.foodchem.2012.03.06110.1016/j.foodchem.2012.03.061Search in Google Scholar PubMed

[6] Johkan M., Shoji K., Goto F., Hahida S., Yoshihara T., Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce, Hort. Science, 2010, 45, 1809–1814 10.21273/HORTSCI.45.12.1809Search in Google Scholar

[7] Li Q., Kubota C., Effects of supplemental light quality in growth and phytochemicals of baby leaf lettuce, Environ. Experiment. Botany, 2009, 67, 59–64 http://dx.doi.org/10.1016/j.envexpbot.2009.06.01110.1016/j.envexpbot.2009.06.011Search in Google Scholar

[8] Charron C.S., Sams C.E., Glucosinolate contents and myrosinase activity in rapid-cycling brassica olearacea grown in controlled environment, J. Amer. Soc. Hort. Sci., 2004, 129, 321–330 10.21273/JASHS.129.3.0321Search in Google Scholar

[9] Lefsrud M.G., Kopsell D.A., Curran-Celentano J., Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment, Physiol. Plant., 2006, 127, 624–631 http://dx.doi.org/10.1111/j.1399-3054.2006.00692.x10.1111/j.1399-3054.2006.00692.xSearch in Google Scholar

[10] Urbonavičiūtė A., Samuolienė G., Brazaitytė A., Duchovskis P., Ruzgas V., Žukauskas A., The effect of variety and lighting quality on wheatgrass antioxidant properties, Zemdirbyste, 2009, 96, 119–128 Search in Google Scholar

[11] Stutte G.W., Edney S., Skerritt T., Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes, Hort Science, 2009, 44, 79–82 10.21273/HORTSCI.44.1.79Search in Google Scholar

[12] Ilieva I., Ivanova T., Naydenov Y., Dandolov I., Stevanov D., Plant experiments with light-emitting diode module in Svet space greenhouse, Adv. Space Res., 2010, 46, 840–845 http://dx.doi.org/10.1016/j.asr.2010.05.00910.1016/j.asr.2010.05.009Search in Google Scholar

[13] Anjana S.U., Iqbal M., Factors, responsible for nitrate accumulation: a review, J. Sustain. Agric., 2009, 4, 533–549 http://dx.doi.org/10.1007/978-90-481-2666-8_3310.1007/978-90-481-2666-8_33Search in Google Scholar

[14] Golan T., Müller-Moulé P., Niyogi K.K., Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants, Plant Cell Environ., 2006, 29, 879–887 http://dx.doi.org/10.1111/j.1365-3040.2005.01467.x10.1111/j.1365-3040.2005.01467.xSearch in Google Scholar PubMed

[15] Zhou Y.H., Zhang Y.Y., Zhao X., Yu H.J., Shi K., Yu J.Q., Impact of light variation on development of photoprotection, antioxidants, and nutritional value in Lactuca sativa L., J. Agric. Food Chem., 2009, 57, 5494–5500 http://dx.doi.org/10.1021/jf804032510.1021/jf8040325Search in Google Scholar PubMed

[16] Kopsell D.A., Pantanizopoulos N.I., Sams C.E., Kopsell D.E., Shoot tissue pigment levels increase in ‘Florida Broadleaf’ mustard (Brassica juncea L.) microgreens following high light treatment, Sci. Hort., 2012, 14, 96–99 http://dx.doi.org/10.1016/j.scienta.2012.04.00410.1016/j.scienta.2012.04.004Search in Google Scholar

[17] Tamulaitis G., Duchovskis P., Bliznikas Z., Breive K., Ulinskaite R., Brazaityte A. et al., Highpower light-emitting diode based facility for plant cultivation, J. Phys. D. Appl. Phys., 2005, 38, 3182–3187 http://dx.doi.org/10.1088/0022-3727/38/17/S2010.1088/0022-3727/38/17/S20Search in Google Scholar

[18] Ragaee S., Abdel-Aal E.M., Maher N., Antioxidant activity and nutrient composition of selected cereals for food use, Food Chem., 2006, 95, 32–38 http://dx.doi.org/10.1016/j.foodchem.2005.04.03910.1016/j.foodchem.2005.04.039Search in Google Scholar

[19] Stanciu G., Lupşor S., Sava C., Spectrophotometric characterizations of anthocyans extracted from black grapes skin, Ovidijus University Ann. Chem., 2009, 20, 205–208 Search in Google Scholar

[20] Janghel E.K., Gupta V.K., Rai M.K., Rai J.K., Micro determination of ascorbic acid using methyl viologen, Talanta, 2007, 72, 1013–1016 http://dx.doi.org/10.1016/j.talanta.2006.12.04110.1016/j.talanta.2006.12.041Search in Google Scholar PubMed

[21] Geniatakis E., Fousaki M., Chaniotakis N.A., Direct potentiometric measurement of nitrate in seeds and produce, Comm. Soil Sci. Plant Anal., 2003, 34, 571–579 http://dx.doi.org/10.1081/CSS-12001784010.1081/CSS-120017840Search in Google Scholar

[22] Evans J.R., Poorter H., Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain, Plant, Cell Environ., 2001, 24, 755–767 http://dx.doi.org/10.1046/j.1365-3040.2001.00724.x10.1046/j.1365-3040.2001.00724.xSearch in Google Scholar

[23] Fu W., Li P., Wu Y., Tang J., Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce, Hort. Sci., 2012, 39, 129–134. 10.17221/192/2011-HORTSCISearch in Google Scholar

[24] Santamaria P., Elia A., Gonnella M., Parente A., Serio F., Ways of reducing rocket salad nitrate content, Acta Hortic., 2001, 548, 529–537 10.17660/ActaHortic.2001.548.64Search in Google Scholar

[25] Araya T., Noguchi K., Terashima I., Effect of nitrogen on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L., J. Plant Res., 2010, 123, 371–379 http://dx.doi.org/10.1007/s10265-009-0279-810.1007/s10265-009-0279-8Search in Google Scholar PubMed

[26] Walters R.G., Shephard F., Rogers J.J.M., Rolfe S.A., Horton P., Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment, Plant Physiol., 2003, 131, 472–481 http://dx.doi.org/10.1104/pp.01547910.1104/pp.015479Search in Google Scholar PubMed PubMed Central

[27] Oh M.M., Rajashekar C.B., Antioxidant contents of edible sprouts: effects of environmental shocks, J. Sci. Food Agric., 2009, 89, 2221–2227 http://dx.doi.org/10.1002/jsfa.371110.1002/jsfa.3711Search in Google Scholar

[28] Oh M.M., Carey E.E., Rajashekar C.B., Environmental stresses induce health — promoting phytochemicals in lettuce, Plant Physiol. Bioch., 2009, 47, 578–583 http://dx.doi.org/10.1016/j.plaphy.2009.02.00810.1016/j.plaphy.2009.02.008Search in Google Scholar PubMed

[29] Page M., Sultana N., Paszkiewicz K., Florance H., Smirnoff N., The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis, Plant Cell Environ., 2012, 35, 388–404 http://dx.doi.org/10.1111/j.1365-3040.2011.02369.x10.1111/j.1365-3040.2011.02369.xSearch in Google Scholar PubMed

[30] Shao H.B., Chu L.Y., Lu Z.H., Kang C.M., Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells, Int. J. Biol. Sci., 2008, 4, 8–14 http://dx.doi.org/10.7150/ijbs.4.810.7150/ijbs.4.8Search in Google Scholar PubMed PubMed Central

[31] Solfanelli C., Poggi A., Loreti E., Alpi A., Perata P., Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis, Plant Physiol., 2006, 144, 637–646 http://dx.doi.org/10.1104/pp.105.07257910.1104/pp.105.072579Search in Google Scholar PubMed PubMed Central

Published Online: 2013-9-19
Published in Print: 2013-12-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 7.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.2478/s11535-013-0246-1/html
Scroll Up Arrow