Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 30, 2014

Chemical composition, antimicrobial, antioxidative and anticholinesterase activity of Satureja Montana L. ssp montana essential oil

  • Tatjana Mihajilov-Krstev EMAIL logo , Dragan Radnović , Dušanka Kitić , Vesna Jovanović , Violeta Mitić , Zorica Stojanović-Radić and Bojan Zlatković
From the journal Open Life Sciences


The present study investigates the chemical compositions of three Satureja montana L. ssp montana essential oils and correlates chemical variability with biological activities. GC/MS analysis showed that with an increase in altitude (100–500–800 m), a higher content of linalool, terpinen-4-ol and cis-sabinene hydrate was found, while the percentage of phenolic compounds, thymol and carvacrol decreased. Antimicrobial activity of the essential oils was tested against 7 fungal and 23 bacterial strains. The essential oil characterized by the highest content of phenols and alcohols exhibited the highest antimicrobial potential. The correlation analysis showed that the major carriers of the obtained antioxidant activity are oxygenated monoterpenes. All essential oils inhibited human serum cholinesterase activity. High antimicrobial potential, together with moderate antioxidant capacity and strong inhibition of human serum cholinesterase, classifies S. montana essential oil as a natural source of compounds that can be used in the treatment of foodborne and neurological diseases, wound and other infections, as well as for general health improvement.

[1] Redžić S., Wild edible plants and their traditional use in the human nutrition in Bosnia-Herzegovina, Free Radic. Res., 2006, 45, 189–232 10.1080/03670240600648963Search in Google Scholar

[2] Leporatti M.L., Ivancheva S., Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy, J. Ethnopharmacol., 2003, 87, 123–142 in Google Scholar

[3] Zavatti M., Zanoli P., Benelli A., Rivasi M., Baraldi C., Baraldi M., Experimental study on Satureja montana as a treatment for premature ejaculation, J. Ethnopharmacol., 2011, 133, 2629–633 in Google Scholar PubMed

[4] Ćavar S., Maksimović M., Šolić M., Jerković-Mujkić E., Bešta R., Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils, Food Chem., 2008, 111, 648–653 in Google Scholar

[5] Radonić A., Miloš M., Chemical Composition and In Vitro Evaluation of Antioxidant Effect of Free Volatile Compounds from Satureja montana L., Free Radic. Res., 2003, 37, 673–679 in Google Scholar PubMed

[6] Skočibušić M., Bežić N., Chemical composition and antidiarrhoeal activities of winter savory (Satureja montana L.) Essential Oil, Pharm. Biol., 2003, 41, 622–626 in Google Scholar

[7] Skočibušić M., Bežić N., Chemical composition and antimicrobial variability of Satureja montana L. essential oils produced during ontogenesis, J. Essent. Oil. Res., 2004, 16, 387–391 in Google Scholar

[8] Oussalah M., Caillet S., Saucier L., Lacroix M., Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes, Food Control, 2007, 18, 414–420 in Google Scholar

[9] Carramiñana J.J., Rota C., Burillo J., Herrera A., Antibacterial efficiency of spanish Satureja Montana essential oil against Listeria monocytogenes among natural flora in minced pork, J. Food Protect, 2008, 71, 502–508 10.4315/0362-028X-71.3.502Search in Google Scholar PubMed

[10] Nedorostova L., Kloucek P., Kokoska L., Stolcova M., Pulkrabek J., Antimicrobial properties of selected essential oils in vapor phase against foodborne bacteria, Food Control, 2009, 20, 157–160 in Google Scholar

[11] Ciani M., Menghini L., Mariani F., Pagiotii R., Menghini A., Fatichenti F., Antimicrobial properties of essential oil of Satureja montana L., on pathogenic and spoilage yeasts, Biotechnol. Lett., 2000, 22, 1007–1010 in Google Scholar

[12] Lampronti I., Saab A.M., Gambari R., Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division, Int. J. Oncol., 2006, 29, 989–995 10.3892/ijo.29.4.989Search in Google Scholar

[13] Prieto J.M., Iacopini P., Cioni P., Chericoni S., In vitro activity of the essential oils of Origanum vulgare, Satureja montana and their main constituents in peroxynitrite-induced oxidative processes, Food Chem., 2007, 104, 889–895 in Google Scholar

[14] Slavkovska V., Jančić J., Bojović S., Milosavljević S., Đoković D., Variability of essential oils of Satureja montana L. and Satureja kitaibelii Wierzb. ex Heuff. from the central part of the Balkan peninsula, Phytochem., 2001, 57, 71–76 in Google Scholar

[15] Miloš M., Radonić A., Bežić N., Dunkić V., Localities and seasonal variations in the chemical composition of essential oils of Satureja montana L. and S. cuneifolia Ten., Flavour. Fragr. J., 2001, 16, 157–160 10.1002/ffj.965Search in Google Scholar

[16] Ibraliu A., Dhillon B.S., Faslia N., Stich B., Variability of essential oil composition in Albanian accessions of Satureja montana L., J. Med. Plants. Res., 2010, 4, 1359–1364 Search in Google Scholar

[17] Mastelić J., Jerković I., Gas chromatography-mass spectrometry analysis of free and glycoconjugated aroma compounds of seasonally collected Satureja montana L., Food Chem., 2003, 80, 135–140 in Google Scholar

[18] Šilić Č., Monograph of the genera Satureja L. Calamintha Miller, Micromeria Bentham, Acinos Miller and Clinopodium L. in flora of Yugoslavia [Monografija rodova Satureja L. Calamintha Miller, Micromeria Bentham, Acinos Miller i Clinopodium L. u flori Jugoslavije], Zemaljski Muzej BiH, Sarajevo, 1979 Search in Google Scholar

[19] Bežić N., Šamanić I., Dunkić V., Besendorfer V., Puizina J., Essential Oil Composition and internal transcribed spacer (ITS) sequence variability of four south-Croatian Satureja species (Lamiaceae), Molecules, 2009, 14, 925–938 in Google Scholar PubMed PubMed Central

[20] Clevenger J.P., Content o essential oil in plants, American Perfumer and Essential Oil Review, 1928, 23, 467–503 Search in Google Scholar

[21] Adams R.P., Identification of essential oil components by gas hromatography/mass spectrometry. 4th Ed., Allured Publishing Corporation, Carol Stream, IL, 2007 Search in Google Scholar

[22] Mihajilov-Krstev T., Radnović D., Kitić D., Zlatković B., Ristić M., Branković S., Chemical composition and antimicrobial activity of Satureja hortensis L. essential oil., Cent. Eur. J. Biol., 2009, 4, 411–416 in Google Scholar

[23] Kulišić T., Radonić A., Katalinić V., Miloš M., Use of different methods for testing antioxidative activity of oregano essential oil, Food Chem., 2004, 85, 633–640 in Google Scholar

[24] Stojanović G., Stojanović I., Stankov-Jovanović V., Mitić V., Kostić D., Reducing power and radical scavenging activity of four Parmeliaceae species, Cent. Eur. J. Biol., 2010, 5, 808–813 in Google Scholar

[25] Re R., Pellegrini N., Proteggente A., Pannula A., Yang M., Rice-Evans C., Antioxidant activity applying an improved abts radical cation decolorization assay, Free Radic. Biol. Med., 1999, 26, 1231–1237 in Google Scholar

[26] Sanchez-Moreno C., Methods used to evaluate the free radical scavenging activity in foods and biological systems, Food Sci. Technol. Int., 2002, 8, 121–137 in Google Scholar

[27] Stankov-Jovanović V.P., Nikolić-Mandić S.D., Mandić Lj.M., Mitić V.D., Modification of the kinetic determination of pancuronium bromide based on its inhibitory effect on cholinesterase, J. Clin.Lab. Anal., 2007, 21, 124–131 in Google Scholar PubMed PubMed Central

[28] Hadian J., Tabatabaei S.M.F., Naghavi M.R., Jamzad Z., Ramak-Masoumi T., Genetic diversity of Iranian accessions of Satureja hortensis L. based on horticultural traits and RAPD markers, Sci. Hortic., 2008, 115, 196–202 in Google Scholar

[29] Dunkić V., Bezić N., Vuko E., Cukrov D., Antiphytoviral Activity of Satureja montana L. ssp. variegata (Host) P. W. Ball Essential Oil and Phenol Compounds on CMV and TMV, Molecules, 2010, 15, 6713–6721 in Google Scholar

[30] Angelini L.G., Carpanese G., Cioni P.L., Morelli I., Macchia M., Flamini G., Essential oils from Mediterranean Lamiaceae as weed germination inhibitors, J. Agric. Food Chem., 2003, 51, 6158–6164 in Google Scholar PubMed

[31] Nikaido H., Prevention of drugs access to bacterial targets: permeability barriers and active efflux, Science, 1994, 264, 382–388 in Google Scholar PubMed

[32] Dorman H.J.D., Deans S.G., Antimicrobial agents from plants: antibacterial activity of plant volatile oils, J. App. Microbiol., 2000, 88, 308–316 in Google Scholar PubMed

[33] Zhou F., Ji B., Zhang H., Jiang H., Yang Z., Li J., Li J., Yan W., The antibacterial effect of cinnamaldehyde, thymol, carvacrol and their combinations against the foodborne pathogen Salmonella typhimurium, J. Food Safety, 2007, 27, 124–133 in Google Scholar

Published Online: 2014-4-30
Published in Print: 2014-7-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.5.2023 from
Scroll to top button