Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 24, 2006

Factors of lowered respiratory CO2 sensitivity by acetazolamide in anaesthetized rabbits

Heidrun Kiwull-Schöne, Luc Teppema and Peter Kiwull
From the journal Open Medicine

Abstract

The carbonic anhydrase (CA) inhibitor acetazolamide is a classic drug to treat patients with breathing disorders. Recent studies in rabbits showed that low-dose acetazolamide (not causing appreciable inhibition of red cell CA) significantly weakened respiratory muscle performance, accompanied by diminished ventilatory CO2-sensitivity, which implies stabilizing loop-gain properties. Now is aimed to explore the interaction of these factors under conditions of complete CA-inhibition by acetazolamide in a higher dose-range.

In anesthetized rabbits (N=7), acetazolamide (up to 75 mg·kg−1) distinctly lowered the base excess (to-7.6 ± 0.9mM, mean ± SEM) without respiratory compensation of arterial pH. Ventilatory CO2-sensitivity was nearly abolished to 15.1 ± 5.2% of control, but the transmission of a CO2-mediated rise in tidal phrenic activity into respiratory work was only reduced by 51.6 ± 6.4%, P < 0.001, not very much more than (~38%) already observed at low-doses.

Thus, the large reduction of ventilatory CO2-sensitivity in the high-dose range cannot be ascribed to respiratory muscle weakening, but rather may relate to complete inhibition of red cell CA. Conversely, CA-inhibition may not be the only cause for the weakening effect of acetazolamide on (respiratory) muscles. Adverse effects on respiratory muscles, impaired CO2-transport and acid-base imbalance may limit to make use of stabilizing effects on breathing control functions by high-dose acetazolamide.

[1] E.R. Swenson: “Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression”, Eur. Respir. J., Vol. 12, (1998), pp. 1242–1247. http://dx.doi.org/10.1183/09031936.98.1206124210.1183/09031936.98.12061242Search in Google Scholar

[2] H. Tojima, F. Kunitomo, H. Kimura, K. Tatsumi, T. Kuriyama and Y. Honda: “Effects of acetazolamide in patients with the sleep apnoea syndrome”, Thorax, Vol. 43, (1988), pp. 113–119. http://dx.doi.org/10.1136/thx.43.2.11310.1136/thx.43.2.113Search in Google Scholar

[3] E.R. Swenson and J.M.B. Hughes: “Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in man”, J. Appl. Physiol., Vol. 73, (1993), pp. 230–237. Search in Google Scholar

[4] L.J. Teppema and A. Dahan: “Acetazolamide and breathing. Does a clinical dose alter peripheral and central CO2 sensitivity?”, Am. J. Respir. Crit. Care Med., Vol. 160, (1999), pp. 1592–1597. Search in Google Scholar

[5] L. Teppema, A. Berkenbosch, J. DeGoede and C. Olievier: “Carbonic anhydrase and the control of breathing: different effects of benzolamide and methazolamide in the anaesthetized cat”, J. Physiol. (Lond), Vol. 488, (1995), pp. 767–777. Search in Google Scholar

[6] M. Wagenaar, L. Teppema, A. Berkenbosch, C. Olievier and H. Folgering: “The effect of low-dose acetazolamide on the ventilatory CO2 response curve in the anaesthetized cat”, J. Physiol. (Lond), Vol. 495, (1996), pp. 227–237. Search in Google Scholar

[7] L.J. Teppema, A. Dahan and C.N. Olievier: “Low-dose acetazolamide reduces the hypoxic ventilatory response in the anaesthetized cat”, Respir. Physiol. Neurobiol., Vol. 140, (2004), pp. 43–51. http://dx.doi.org/10.1016/j.resp.2004.01.00110.1016/j.resp.2004.01.001Search in Google Scholar

[8] E.R. Swenson, K.L. Leatham, R.C. Roach, R.B. Schoene, W.J. Mills and P.H. Hackett: “Renal carbonic anhydrase inhibition reduces high altitude sleep periodic breathing”, Respir. Physiol., Vol. 86, (1991) pp. 333–343. http://dx.doi.org/10.1016/0034-5687(91)90104-Q10.1016/0034-5687(91)90104-QSearch in Google Scholar

[9] P.W. Jones and M. Greenstone: “Carbonic anhydrase inhibitors for hypercapnic ventilatory failure in chronic obstructive pulmonary disease”, Cochrane Database Syst. Rev., Vol. 1, (2001), CD002881. Search in Google Scholar

[10] J. Verbraecken, M. Willemen, W. De Cock, E. Coen, P. Van de Heyning and W. De Backer: “Central sleep apnea after interrupting longterm acetazolamide therapy”, Respir. Physiol., Vol. 112, (1998), pp. 59–70. http://dx.doi.org/10.1016/S0034-5687(98)00010-310.1016/S0034-5687(98)00010-3Search in Google Scholar

[11] H.F. Kiwull-Schöne, L.J. Teppema and P.J. Kiwull: “Low-dose acetazolamide does affect respiratory muscle function in spontaneously breathing anesthetized rabbits”, Am. J. Respir. Crit. Care Med., Vol. 163, (2001), pp. 478–483. Search in Google Scholar

[12] H. Kiwull-Schöne, L. Teppema, M. Wiemann and P. Kiwull: “Loop gain of respiratory control upon reduced activity of carbonic anhydrase or Na+/H+ exchange”, Adv. Exp. Med. Biol., Vol. 580, (2006), pp. 239–244. Search in Google Scholar

[13] W.F. Brechue, D.M. Koceja and J.M. Stager: “Acetazolamide reduces peripheral afferent transmission in humans”, Muscle Nerve, Vol. 20, (1997), pp. 1541–1548. http://dx.doi.org/10.1002/(SICI)1097-4598(199712)20:12<1541::AID-MUS9>3.0.CO;2-810.1002/(SICI)1097-4598(199712)20:12<1541::AID-MUS9>3.0.CO;2-8Search in Google Scholar

[14] L.A. Garske, M.G. Brown and S.C. Morrison: “Acetazolamide reduces exercise capacity and increases leg fatigue under hypoxic conditions”, J. Appl. Physiol., Vol. 94, (2003), pp. 991–996. Search in Google Scholar

[15] L.J. Teppema, F. Rochette and M. Demedts: “Ventilatory effects of carbonic anhydrase inhibition in cats: effects of acetazolamide in intact vs. peripherally chemodenervated animals”, Respir. Physiol., Vol. 74, (1988), pp. 373–382. http://dx.doi.org/10.1016/0034-5687(88)90044-810.1016/0034-5687(88)90044-8Search in Google Scholar

[16] T.H. Maren: “Carbonic anhydrase: Chemistry, Physiology and inhibition”, Physiol. Rev. Vol. 47, (1967), pp. 595–781. Search in Google Scholar

[17] L.J. Teppema, F. Rochette and M. Demedts: “Effects of acetazolamide on medullary extracellular pH and PCO2 and on ventilation in peripherally chemodenervated cats”, Pflügers Arch., Vol. 415, (1990), pp. 519–525. Search in Google Scholar

[18] K. Kohshi, N. Konda, Y. Kinoshita, E. Tsuru and A. Yokota: “In situ arterial and brain tissue PaCO2 responses to acetazolamide in cats”, J. Appl. Physiol., Vol. 76, (1994), pp. 2199–2203. Search in Google Scholar

[19] Ph.E. Bickler, L. Litt, D.B. Banville and J.W. Severinghaus: “Effects of acetazolamide on cerebral acid-base balance”, J. Appl. Physiol., Vol. 65, (1988), pp. 422–427. Search in Google Scholar

[20] H. Kiwull-Schöne, H. Kalhoff, F. Manz, L. Diekmann and P. Kiwull: “Minimalinvasive approach to study pulmonary, metabolic and renal responses to acid-base changes in conscious rabbits”, Eur. J. Nutr., Vol. 40, (2001), pp. 255–259. http://dx.doi.org/10.1007/s394-001-8353-z10.1007/s394-001-8353-zSearch in Google Scholar

[21] R. Iturriagha: “Carotid body chemoreception: the importance of CO2-HCO 3− and carbonic anhydrase (review)”, Biol. Res., Vol. 26, (1993), pp. 319–329. http://dx.doi.org/10.1006/cbmr.1993.102210.1006/cbmr.1993.1022Search in Google Scholar

[22] K. Taki, K. Oogushi, K. Hirahara, X. Gai, F. Nagashima and K. Tozuka: “Preferential acetazolamide-induced vasodilation based on vessel size and organ: Conformation of peripheral vasodilation with use of colored microspheres”, Angiology, Vol. 52, (2001), pp. 483–488. http://dx.doi.org/10.1177/00033197010520070710.1177/000331970105200707Search in Google Scholar

[23] A. Dahl, D. Russell, K. Rootwelt, R. Nyberg-Hansen and E. Kerty: “Cerebral vasoreactivity assessed with transcranial Doppler and regional cerebral blood flow measurements. Dose, serum concentration, and time course of the response to acetazolamide”, Stroke, Vol. 26, (1995), pp. 2302–2306. Search in Google Scholar

[24] T.S. Lee: “End-tidal partial pressure of carbon dioxide does not accurately reflect PaCO2 in rabbits treated with acetazolamide during anaesthesia”, Br. J. Anaesthesiol., Vol. 73, (1994) pp. 225–226. Search in Google Scholar

[25] C. Geers and G. Gros: “Carbon dioxide transport and carbonic anhydrase in blood and muscle”, Physiol. Rev., Vol. 80, (2000), pp. 681–715. Search in Google Scholar

[26] M. Carmignani, C. Scopetta, F.O. Ranelletti and P. Tonali: “Adverse interaction between acetazolamide and anticholinesterase drugs at the normal and myasthenic neuromuscular junction level”, Int. J. Clin. Pharmacol. Therap. Toxicol., Vol. 22, (1984), pp. 140–144. Search in Google Scholar

[27] H. Westerblad, D.G. Allen and J. Lännergren: “Muscle fatigue: Lactic acid or inorganic phosphate the major cause?”, News Physiol. Sci., Vol. 17, (2002), pp. 17–21. Search in Google Scholar

[28] D. Tricarico, M. Barbieri, M. Mele, G. Carbonara and D. Conte Camerino: “Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats”, FASEB J., Vol. 18, (2004), pp. 760–761. Search in Google Scholar

[29] M. DeCramer, V. DeBock and R. Dom: “Functional and histologic picture of steroidinduced myopathy in chronic obstructive pulmonary disease”, Am. J. Respir. Crit. Care Med. Vol. 153, (1996), pp. 1958–1964. Search in Google Scholar

[30] G.S. Longobardo, B. Gothe, M.D. Goldman and N.S. Cherniack: “Sleep apnea considered as a control system instability”, Respir. Physiol., Vol. 50, (1982), pp. 311–333. http://dx.doi.org/10.1016/0034-5687(82)90026-310.1016/0034-5687(82)90026-3Search in Google Scholar

[31] M.C.K. Khoo: “Determinants of ventilatory instability and variability”, Respir. Physiol., Vol. 122, (2000), pp. 167–182. http://dx.doi.org/10.1016/S0034-5687(00)00157-210.1016/S0034-5687(00)00157-2Search in Google Scholar

[32] M. Younes, M. Ostrowski, W. Thompson, C. Leslie and W. Shewchuk: “Chemical control stability in patients with obstructive sleep apnea”, Am. J. Respir. Crit. Care Med., Vol. 163, (2001), pp. 1181–1190. Search in Google Scholar

[33] J.A. Dempsey, C.A. Smith, T. Przybylowski, B. Chenuel, A. Xie, H. Nakayama and J.B. Skatrud: “The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep”, J. Physiol. (Lond.), Vol. 560, (2004), pp. 1–11. http://dx.doi.org/10.1113/jphysiol.2004.07237110.1113/jphysiol.2004.072371Search in Google Scholar PubMed PubMed Central

Published Online: 2006-10-24
Published in Print: 2006-12-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow