Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 9, 2010

Aorta transplantation in young apolipoprotein E-deficient mice: Possible model for studies on regression of atherosclerotic lesions?

Zbyněk Tonar, Dagmar Bobková, Kirsti Witter, Vít Matějka, Jana Havlíčková, Věra Lánská and Rudolf Poledne
From the journal Open Medicine

Abstract

Syngeneic transplantation of murine aorta segments with advanced atherosclerotic lesions in defined recipients is a valuable model for regression studies. To date, this model has not been used to study the regression of initial atherosclerotic lesions. The aim of this study was to evaluate a microsurgical technique of syngeneic heterotopic transplantation of the thoracic aorta of young apolipoprotein E-deficient (ApoE-/-) mice to the abdominal aorta of wild-type recipients. Stereological quantification methods were tested in order to assess changes in structure and volume of the aortic wall including the involvement of immune cells in changes of the atherosclerotic lesions. The animals were euthanised one month after surgery and histological analysis including stereological quantification of changes in both the grafts and adjacent aorta segments was performed. The overall survival rate of the recipients was 62.5%. No regression of initial atherosclerotic lesion was achieved and neointima formation and elastin degradation prevailed in all transplanted specimens. The volume of the arteriosclerotic lesions was higher (p<0.001) and elastin length density was lower (p<0.001) in transplanted ApoE-/- samples as compared to adjacent segments. In transplanted grafts, T- and B-lymphocytes, macrophages and neutrophilic granulocytes formed non-random clusters within the vessel wall and they were colocalised with the sutures. The reproducibility of the promising regression model was derogated in young mice by the striking dependence of the results upon the operation technique. Stereological assessment has proven to be accurate, correct and reproducible; it has provided us with robust quantitative estimates, which can be achieved with a reasonable effort.

[1] Plump A.S., Smith J.D., Hayek T., Aalto-Setala K., Walsh A., Verstuyft J.G., Rubin E.M., Breslow J.L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E- deficient mice created by homologous recombination in ES cells. Cell, 1992, 71,343–353 http://dx.doi.org/10.1016/0092-8674(92)90362-G10.1016/0092-8674(92)90362-GSearch in Google Scholar

[2] Breslow J.L. Transgenic mouse model of lipoprotein metabolism and atherosclerosis. PNAS, 1993, 90, 8314–8318 http://dx.doi.org/10.1073/pnas.90.18.831410.1073/pnas.90.18.8314Search in Google Scholar

[3] Breslow J.L. Mouse models of atherosclerosis. Science 1996, 272, 685–688 http://dx.doi.org/10.1126/science.272.5262.68510.1126/science.272.5262.685Search in Google Scholar

[4] von Eckardstein A. Cholesterol efflux from macrophages and other cells. Curr. Opin. Lipidol., 1996, 7, 308–319 http://dx.doi.org/10.1097/00041433-199610000-0000910.1097/00041433-199610000-00009Search in Google Scholar

[5] Curtiss L.K. ApoE in atherosclerosis: A protein with multiple hats. Arterioscler. Thromb. Vasc. Biol., 2000, 20, 1852–1853 10.1161/01.ATV.20.8.1852Search in Google Scholar

[6] Greenow K., Pearce N.J., Ramji D.P. The key role of apolipoprotein E in atherosclerosis. J. Mol. Med., 2005, 83, 329–342. http://dx.doi.org/10.1007/s00109-004-0631-310.1007/s00109-004-0631-3Search in Google Scholar

[7] van Ree J.H., van den Broek W.J., Dahlmans V.E., Groot P.H., Vidgeon-Hart M., Frants R.R., Wieringa B., Havekes L.M., Hofker M.H. Dietinduced hypercholesterolemia and atherosclerosis in heterozygous apolipoprotein E-deficient mice. Atherosclerosis, 1994, 111, 25–37 http://dx.doi.org/10.1016/0021-9150(94)90188-010.1016/0021-9150(94)90188-0Search in Google Scholar

[8] Nakashima Y., Plump A.S., Raines E.W., Breslow J.L., Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. Vasc. Biol., 1994, 14, 133–140 10.1161/01.ATV.14.1.133Search in Google Scholar

[9] Jawien J., Nastalek P., Korbut R. Mouse models of experimental atherosclerosis. J. Physiol. Pharmacol., 2004, 55, 503–517 Search in Google Scholar

[10] Ohashi R., Mu H., Yao Q., Chen C. Cellular and molecular mechanisms of atherosclerosis with mouse models. Trends Cardiovasc. Med., 2004, 14, 187–190 http://dx.doi.org/10.1016/j.tcm.2004.04.00210.1016/j.tcm.2004.04.002Search in Google Scholar

[11] Garber D.W., Kulkarni K.R., Anantharamaiah G.M. A sensitive and convenient method for lipoprotein profile analysis of individual mouse plasma samples. J. Lip. Res., 2000, 41, 1020–1026 10.1016/S0022-2275(20)32045-9Search in Google Scholar

[12] Havel R.J., Eder H.A., Bragdon J.H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest., 1955, 34, 1345–1353 http://dx.doi.org/10.1172/JCI10318210.1172/JCI103182Search in Google Scholar

[13] Gotto A.M. Jr., Pownall H.J., Havel R.J. Introduction to the Plasma Lipoproteins. In: Segrest J.P., Albers J.J. (Eds.), Methods in Enzymology, Vol. 128. Plasma Lipoproteins. Part A. Preparation, Structure, and Molecular Biology Academic Press, Orlando, 1986 10.1016/0076-6879(86)28061-1Search in Google Scholar

[14] Shi W., Wang X,, Wang N.J., McBride W.H., Lusis A.J. Effect of macrophage-derived apolipoprotein E on established atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2000, 20, 2261–2266 10.1161/01.ATV.20.10.2261Search in Google Scholar

[15] van Eck M., Herijgers N., van Dijk K.W., Havekes L.M., Hofker M.H., Groot P.H., van Berkel T.J. Effect of macrophage-derived mouse ApoE, human ApoE3-Leiden, and human ApoE2, (Arg158->Cys) on cholesterol levels and atherosclerosis in ApoEdeficient mice. Arterioscler. Thromb. Vasc. Biol., 2000, 20, 119–127 10.1161/01.ATV.20.1.119Search in Google Scholar

[16] Gough P.J., Raines E.W. Gene therapy of apolipoprotein E-deficient mice using a novel macrophage-specific retroviral vector. Blood, 2003, 101, 485–491 http://dx.doi.org/10.1182/blood-2002-07-213110.1182/blood-2002-07-2131Search in Google Scholar

[17] Su Y.R., Ishiguro H., Major A.S., Dove D.E., Zhang W., Hasty A.H., Babaev V.R., Linton M.F., Fazio S. Macrophage apolipoprotein A-I expression protects against atherosclerosis in ApoE-deficient mice and up-regulates ABC transporters. Mol. Ther., 2003, 8, 576–583 http://dx.doi.org/10.1016/S1525-0016(03)00214-410.1016/S1525-0016(03)00214-4Search in Google Scholar

[18] Reis E.D., Li J., Fayad Z.A., Rong J.X., Hansoty D., Aguinaldo J.G., Fallon J.T., Fisher E.A. Dramatic remodeling of advanced atherosclerotic plaques of the apolipoprotein E-deficient mouse in a novel transplantation model. J. Vasc. Surg., 2001, 34, 541–547 http://dx.doi.org/10.1067/mva.2001.11596310.1067/mva.2001.115963Search in Google Scholar

[19] Rong J.X., Li J., Reis E.D., Choudhury R.P., Dansky H.M., Elmalem V.I., Fallon J.T., Breslow J.L., Fisher E.A. Elevating high-density lipoprotein cholesterol in apolipoprotein E — deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation, 2001, 104, 2447–2452 http://dx.doi.org/10.1161/hc4501.09895210.1161/hc4501.098952Search in Google Scholar

[20] Chereshnev I., Trogan E., Omerhodzic S., Itskovich V., Aguinaldo J.G., Fayad Z.A., Fisher E.A., Reis E.D. Mouse model of heterotopic aortic arch transplantation. J. Surg. Res., 2003, 111, 171–176 http://dx.doi.org/10.1016/S0022-4804(03)00039-810.1016/S0022-4804(03)00039-8Search in Google Scholar

[21] Trogan E., Fayad Z.A., Itskovich V.V., Aguinaldo J.G., Mani V., Fallon J.T., Chereshnev I., Fisher E.A. Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia. Arterioscler. Thromb. Vasc. Biol., 2004, 24, 1714–1719 http://dx.doi.org/10.1161/01.ATV.0000139313.69015.1c10.1161/01.ATV.0000139313.69015.1cSearch in Google Scholar PubMed

[22] Hansson G.K. Immune mechanisms in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2001, 21, 1876–1890 http://dx.doi.org/10.1161/hq1201.10022010.1161/hq1201.100220Search in Google Scholar

[23] Libby P. Inflammation in atherosclerosis. Nature, 2002, 420, 868–874 http://dx.doi.org/10.1038/nature0132310.1038/nature01323Search in Google Scholar

[24] Boyle J.J. Macrophage activation in atherosclerosis: Pathogenesis and pharmacology of plaque rupture. Curr. Vasc. Pharmacol., 2005, 3, 63–68 http://dx.doi.org/10.2174/157016105277386110.2174/1570161052773861Search in Google Scholar

[25] Moos M.P.W., John N., Gräbner R., Nossmann S., Gunther B., Vollandt R., Funk C.D., Kaiser B., Habenicht A.J. The lamina adventitia is the major site of immune cell accumulation in standard chowfed apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2005, 25, 2386–2391 http://dx.doi.org/10.1161/01.ATV.0000187470.31662.fe10.1161/01.ATV.0000187470.31662.feSearch in Google Scholar

[26] Tonar Z., Bobkova D., Havlickova J., Poledne R. Vessel transplantation of apolipoprotein E-deficient mice as a model of atherosclerosis regression. Atherosclerosis Suppl., 2005, 6, 45–45 http://dx.doi.org/10.1016/S1567-5688(05)80180-110.1016/S1567-5688(05)80180-1Search in Google Scholar

[27] European Communities. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. 1986, European Treaty Series No. 123, Strasbourg Search in Google Scholar

[28] Koulack J., McAlister V.C., Giacomantonio C.A., Bitter-Suermann H, MacDonald A.S., Lee T.D. Development of a mouse aortic transplant model of chronic rejection. Microsurgery, 1995, 16, 110–113 http://dx.doi.org/10.1002/micr.192016021310.1002/micr.1920160213Search in Google Scholar PubMed

[29] Kocova J. Overall staining of connective tissue and the muscular layer of vessels. Fol. Morphol., 1970, 3, 293–295 Search in Google Scholar

[30] Stary H.C. Natural History and Histological Classification of Atherosclerotic Lesions. An Update. Arterioscler. Thromb. Vasc. Biol., 2000, 20,, 1177–1178 10.1161/01.ATV.20.5.1177Search in Google Scholar PubMed

[31] Nachtigal P., Semecky V., Kopecky M., Gojova A., Solichova D., Zdansky P., Zadak Z. Application of stereological methods for the quantification of VCAM-1and ICAM-1 expression in early stages of rabbit atherosclerosis. Pathol. Res. Pract., 2004, 200, 219–229 http://dx.doi.org/10.1016/j.prp.2004.02.00810.1016/j.prp.2004.02.008Search in Google Scholar PubMed

[32] Howard C.V., Reed M.G. Unbiased Stereology: Three Dimensional Measurement in Microscopy. 1st edn. Royal Microscopical Society and Springer-Verlag, New York, 1998. Search in Google Scholar

[33] Russ J.C., Dehoff R.T. Classical stereological measures. In: Russ J.C., Dehoff R.T. (Eds). Practical Stereology. 2nd edn. Plenum Press, New York, 2001 10.1007/978-1-4615-1233-2Search in Google Scholar

[34] Gundersen H.J.G., Jensen E.B. The efficiency of systematic sampling in stereology and its prediction. J. Microsc., 1987, 147, 229–263 10.1111/j.1365-2818.1987.tb02837.xSearch in Google Scholar PubMed

[35] Stoyan D., Kendall W.S., Mecke J. Fibre and surface processes. In: Stoyan, D, Kendall, WS, Mecke, J (Eds). Stochastic geometry and its applications. 2nd edn. John Wiley & Sons, Chichester, 1996 Search in Google Scholar

[36] Philimonenko A.A., Janacek J., Hozak P. Statistical evaluation of colocalisation patterns in immunogold labelling experiments. J. Struct. Biol., 2000, 132, 201–210 http://dx.doi.org/10.1006/jsbi.2000.432610.1006/jsbi.2000.4326Search in Google Scholar

[37] Shrout P.E., Fleiss J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psych. Bull., 1979, 2, 420–428 http://dx.doi.org/10.1037/0033-2909.86.2.42010.1037/0033-2909.86.2.420Search in Google Scholar

[38] Lee P.C., Wang Z.L., Qian S., Watkins S.C., Lizonova A., Kovesdi I., Tzeng E., Simmons R.L., Billiar T.R., Shears L.L. Endothelial nitric oxide synthase protects aortic allografts from the development of transplant arteriosclerosis. Transplantation, 2000, 69, 1186–1192 http://dx.doi.org/10.1097/00007890-200003270-0002510.1097/00007890-200003270-00025Search in Google Scholar

[39] Soleimani B., Shi V.C. Experimental models of graft arteriosclerosis. Methods Mol. Biol., 2006, 333, 401–424 10.1385/1-59745-049-9:401Search in Google Scholar

[40] Calfa M., Aitouche A., Vazquez-Padron R.I., Gay-Rabinstein C., Lasko D., Badell J., Farji A., El-Haddad A., Liotta C., Louis L.B., Simmonds A., Pestana I.A., Pang M., Li S., Pham S.M. Aging and transplant arteriosclerosis in absence of alloreactivity and immunosuppressive drugs in a rat aortic model: recipient age’s contribution. Transplantation, 2005, 79, 1683–1690 http://dx.doi.org/10.1097/01.TP.0000163467.93783.C810.1097/01.TP.0000163467.93783.C8Search in Google Scholar

[41] Rauscher F.M., Goldschmidt-Clermont P.J., Davis B.H., Wang T., Gregg D., Ramaswami P., Pippen A.M., Annex B.H., Dong C., Taylor D.A. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation, 2003, 29, 457–463 http://dx.doi.org/10.1161/01.CIR.0000082924.75945.4810.1161/01.CIR.0000082924.75945.48Search in Google Scholar

[42] Chow L.H., Huh S., Jiang J., Zhong R., Pickering J.G. Intimal thickening develops without humoral immunity in a mouse aortic allograft model of chronic vascular rejection. Circulation, 1996, 94, 3079–3082 10.1161/01.CIR.94.12.3079Search in Google Scholar

[43] Sun H., Valdivia L.A., Subbotin V. Improved surgical technique for the establishment of a murine model of aortic transplantation. Microsurgery, 1998, 18, 368–371 http://dx.doi.org/10.1002/(SICI)1098-2752(1998)18:6<368::AID-MICR5>3.0.CO;2-F10.1002/(SICI)1098-2752(1998)18:6<368::AID-MICR5>3.0.CO;2-FSearch in Google Scholar

[44] Hu Y., Davison F., Zhang Z., Xu Q. Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation, 2003, 108, 3122–3127 http://dx.doi.org/10.1161/01.CIR.0000105722.96112.6710.1161/01.CIR.0000105722.96112.67Search in Google Scholar

[45] Sakihama H., Masunaga T., Yamashita K., Hashimoto T., Inobe M., Todo S., Uede T. Stromal cell-derived factor-1 and CXCR4 interaction is critical for development of transplant arteriosclerosis. Circulation, 2004, 110, 2924–2930 http://dx.doi.org/10.1161/01.CIR.0000146890.93172.6C10.1161/01.CIR.0000146890.93172.6CSearch in Google Scholar

[46] Gough P.J., Gomez I.G., Wille P.T., Raines E.W. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. Journal Clin. Invest., 2006, 116, 59–69 http://dx.doi.org/10.1172/JCI2507410.1172/JCI25074Search in Google Scholar PubMed PubMed Central

[47] Ensminger S.M., Spriewald B.M., Witzke O., Morrison K., Pajaro O.E., Morris P.J., Rose M.L., Wood K.J. Kinetics of transplant arteriosclerosis in MHC-class I mismatched and fully allogeneic mouse aortic allografts, Transplantation, 2002, 73, 1068–1074 http://dx.doi.org/10.1097/00007890-200204150-0000910.1097/00007890-200204150-00009Search in Google Scholar PubMed

Published Online: 2010-4-9
Published in Print: 2010-6-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow