Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 7, 2010

Monitoring of T-cell acute lymphoblastic leukemia by flow cytometry

Miglė Janeliūnienė, Rėda Matuzevičienė, Laimonas Griškevičius and Zita Kučinskienė
From the journal Open Medicine


Minimal residual disease (MRD) predicts the outcome of acute lymphoblastic leukemia (ALL). Flow cytometry (FC) is one of the most sensitive and most applicable methods for MRD diagnostics, but there is still no agreement on the “gold standard” of the method. We tried to optimize flow cytometric MRD detection in T-ALL. Fourteen adults and 11 children with T-ALL and 12 normal bone marrow (BM) donors were enrolled in the study. We found that the most common phenotypic aberrations in T-ALL were TdT and CD99 coexpression on T-cells in BM. Therefore for MRD detection we developed a limited four-color marker panel (TdT/CD7/cCD3/CD19 and CD99/CD7/cCD3/CD2) and a standard analysis strategy. This assay was evaluated on BM of healthy controls. Less than 0.01% TdT+ or CD99 bright T-cells were found in normal BM. MRD was detected in 9 adult patients and 1 child at different time-points of treatment. The average TdT and CD99 mean fluorescence intensity (MFI) value of residual blasts fluctuated during therapy, but it still remained higher than MFI of normal T-cells. Our established MRD detection method differentiated leukemic lymphoblasts with sensitivity in the range of 0.01% and did not give any false positive results in normal BM.

[1] Biondi A, Yokota S, Hansen-Hagge TE, Rossi V, Giudici G, Maglia O, Basso G, Tell C, Masera G, Bartram CR. Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission and with consecutive relapse. Leukemia 1992;6:282–8 Search in Google Scholar

[2] Baer MR. Assessment of minimal residual disease in patients with acute leukemia. Curr Opin Oncol 1998;10:17–22 in Google Scholar

[3] Ciudad J, San Miguel JF, Lopez-Bergez MC, Vidriales B, Valverde B, Ocqueteau M, Mateos G, Caballero MD, Hernandes J, Moro MJ, Mateos MV, Orfao A. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1998;16:3774–81 10.1200/JCO.1998.16.12.3774Search in Google Scholar

[4] Griesinger F, Piro-Noack M, Kaib N, Falk M, Renziehausen A, Troff C, Grove D, Schnittger S, Buchner T, Ritter J, Hiddemann W, Wormann B. Leukemia-associated immunophenotypes (LAIP) are observed in 90% of adult and childhood acute lymphoblastic leukemia: detection in remission marrow predicts outcome. Br J Haemat 1999;105:241–55 in Google Scholar

[5] Krampera M, Perbellini O, Maggioni A, Scognamiglio F, Todeschini F, Pizollo G. Flow-cytometric detection of minimal residual disease in adult acute lymphoblastic leukemia. Haematologica 2001;86:322–3 Search in Google Scholar

[6] Malec M, Bjorklund E, Soderhall S, Mazur J, Sjogren AM, Pisa P, Bjorkholm M, Porwit-MacDonald A. Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia 2001;15:716–27 in Google Scholar

[7] Campana D, Pui CH. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995;85:1416–34 10.1182/blood.V85.6.1416.bloodjournal8561416Search in Google Scholar

[8] Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature 1988;334:395–402 in Google Scholar

[9] Kneba M, Bolz I, Linke B, Hiddemann W. Analysis of rearranged T-cell receptor beta-chain genes by polymerase chain reaction (PCR) DNA sequencing and automated high resolution PCR fragment analysis. Blood 1995(10):3930–7 10.1182/blood.V86.10.3930.bloodjournal86103930Search in Google Scholar

[10] Kerst G, Kreyenberg H, Roth C, Well C, Dietz K, Coustan-Smith E, Campana D, Koscielniak E, Niemeyer C, Schlegel PG, Muller I, Niethammer D, Bader P. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haemat 2005(128):774–82 10.1111/j.1365-2141.2005.05401.xSearch in Google Scholar

[11] Robillard N, Cave H Mechinaud F, Guidal C, Garnache-Ottou F, Rohrlich PS, Avet-Loiseau H, Garand R. Four-color flow cytometry bypasses limitations of IG/TCR polymerase chain reaction for minimal residual disease detection in certain subsets of children with acute lymphoblastic leukemia. Haematologica 2005(90):1516–23 Search in Google Scholar

[12] Bradstock KF, Janossy G, Tidman N, Papageorgiou ES, Prentice HG, Willoughby M, Hoffbrand AV. Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukemia. Leuk Res 1981;5:301–9 in Google Scholar

[13] Campana D, Coustan-Smith E. Detection of minimal residual disease by flow cytometry. Cytometry 1999;38:139–52<139::AID-CYTO1>3.0.CO;2-H10.1002/(SICI)1097-0320(19990815)38:4<139::AID-CYTO1>3.0.CO;2-HSearch in Google Scholar

[14] Dworzak MN, Froschl G, Printz D, Zen LD, Gaipa G, Ratei R, Basso G, Biondi A, Ludwig WD, Gadner H. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia 2004;18:703–8 in Google Scholar

[15] Janossy G, Bollum FJ, Bradstock KF, Ashley J. Cellular phenotypes of normal and leukemic hemopoietic cells determined by analysis with selected antibody combinations. Blood 1980;56:430–41 10.1182/blood.V56.3.430.430Search in Google Scholar

[16] Van Dongen JJ, Krissansen GW, Wolvers-Tettero IL, Comans-Bitter WM, Adriaansen HJ, Hooijkaas H, van Wering ER, Terhorst C. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood 1988;71:603–12 10.1182/blood.V71.3.603.603Search in Google Scholar

[17] Campana D, Coustan-Smith E. Advances in immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002;15:1–19 in Google Scholar

[18] Krampera M, Vitale A, Vincenzi C, Perbellini O, Guarini A, Annino L, Todeschini G, Camera A, Fabbiano F, Fioritoni G, Nobile F, Szydlo R, Mandelli F, Foa R, Pizzolo G. Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. Br J Haemat 2003:120:74–9 in Google Scholar

[19] Renzi P, Ginns LC. Analysis of T cell subsets in normal adults. Comparison of whole blood lysis technique to Ficoll-Hypaque separation by flow cytometry. Journal of Immunological Methods 1987(98):53–6 10.1016/0022-1759(87)90434-0Search in Google Scholar

[20] Tamul KR, Schmitz JL, Kane K, Folds JD. Comparison of the effects of Ficoll-Hypaque separation and whole blood lysis on results of immunophenotypic analysis of blood and bone marrow samples from patients with hematologic malignancies. Clin Diagn Lab Immunol 1995(3):337–42 10.1128/cdli.2.3.337-342.1995Search in Google Scholar PubMed PubMed Central

[21] Porwit-MacDonald A, Bjorklund E, Lucio P, van Lochem EG, Mazur J, Parreira A, van den Beemd MW, van Wering ER, Baars E, Gaipa G, Biondi A, Ciudad J, van Dongen JJ, San Miguel JF, Orfao A. BIOMED-1 Concerted Action report: Flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 2000(14):816–25 10.1038/sj.leu.2401741Search in Google Scholar PubMed

[22] Gaipa G, Maglia O, Leoni V, Faini A, Cazzaniga G, Bugarin C, Veltroni M, Michelotto B, Ratei R, Coliva T, Valsecchi MG, Biondi A, Dworzak MN. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia 2005(19):49–56 10.1038/sj.leu.2403559Search in Google Scholar PubMed

[23] Stahnke K, Eckhoff S, Mohr A, Meyer LH, Debatin KM. Apoptosis induction in peripheral leukemia cells by remission induction treatment in vivo: selective depletion and apoptosis in a CD34+ subpopulation of leukemia cells. Leukemia 200317:2130–9 in Google Scholar PubMed

[24] Terstappen LW, Huang S, Picker LJ. Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. Blood 1992(79):666–77 10.1182/blood.V79.3.666.bloodjournal793666Search in Google Scholar

Published Online: 2010-10-7
Published in Print: 2010-12-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow