Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 8, 2011

Heart-rate changes in asphyxic preconditioning in rats depend on light-dark cycle

Pavol Svorc, Ivana Bacova, Roman Benacka, Pavol Svorc, Ruzena Galanova and Benjamin Fulton
From the journal Open Medicine


Generally, it is assumed that heart-rhythm disorders during hypoxia result from the interplay between the autonomic nervous system (ANS) and the direct effect of hypoxia on cardiorespiratory structures of the central nervous system and on the myocardium. Circadian variability in the ANS may substantially influence the electrical stability of the myocardium, and thus it is associated with the preconditioning protective mechanism. We designed our study using anaesthetized Wistar rats (ketamine/xylazine 100 mg/15 mg/kg, i.m., open chest experiments) to evaluate the effect of preconditioning (PC) induced by 1 to 3 cycles (1 PC–3 PC) of asphyxia (5 min. of artificial hypoventilation, VT = 0.5 ml/100 g of b.w., 20 breaths/min.) and reoxygenation (5 min. of artificial ventilation, VT = 1 ml/100 g of b.w., 50 breaths/min.) on the heart rate (HR) during followed exposure 20 minutes of hypoventilation after adaptation to a light-dark (LD) cycle of 12 hours:12 hours. Hypoxic HR increases were only minimally prevented by 1 to 2 PC pre-treatment, particularly during the dark part of the day. A statistically significant HR increase required 3 PC and was seen only in the light part of the day. We concluded that possible ANS participation in asphyxic preconditioning depends not only on the number of preconditioned cycles but also on the LD cycle, when the ANS participation in preconditioning can be effective only in the light (nonactive) period.

[1] Cinca J., Moya A., Figueras J., Roma F., Rius J., Circadian variations in the electrical properties of the human heart assessed by sequential bedside electrophysiologic testing, Am. Heart J., 1986, 112, 315–321 in Google Scholar

[2] Meurling C.J., Waktare J.E.P., Holmqvist F., Hedman A., Camm A.J., Olsson S.B., Malik M., Diurnal variations of the dominant cycle length of chronic atrial fibrillation, Am. J. Physiol., 2001, 280, H401–H406 10.1152/ajpheart.2001.280.1.H401Search in Google Scholar

[3] Simantirakis E.N., Chrysostomakis S.I., Marketou M.E., Kochiadakis G.E., Vardakis K.E., Mavrakis H.E., Vardas P., Atrial and ventricular refractoriness in paced patients — circadian variation and its relationship to autonomous nervous system activity, Eur. Heart J., 2001, 22, 2192–2200 in Google Scholar

[4] Watanabe M., Nakagawa M., Nobe S., Ohie T., Takahashi N., Hara M., Yonemochi H., Ito M., Saikawa T., Circadian variation of short-lasting asymptomatic paroxysmal supraventricular tachycardia, J. Electrocardiol., 2002, 35, 135–138 in Google Scholar

[5] Reimer K.A., Hill M.L., Jennings R.B., Prolonged depletion of ATP and the adenosine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs, J. Mol. Cell Cardiol., 1981, 13, 229–239 in Google Scholar

[6] Barber M.J., Effect of time interval between repeated brief coronary artery occlusions on arrhythmias, electrical activity and myocardial blood flow, J. Am. Coll. Cardiol., 1983, 3, 699–705 in Google Scholar

[7] Murry C.E., Jennings R.B., Reimer K.A., Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation, 1986, 74, 1124–1136 10.1161/01.CIR.74.5.1124Search in Google Scholar

[8] Wolfrum S., Schneider K., Heidbreder M., Nienstedt J., Dominiak P., Dendorfer A., Remote preconditioning protects the heart by activating myocardial PKC epsilon-isoform, Cardiovasc. Res., 2002, 55, 583–589 in Google Scholar

[9] Pell T.J., Baxter G.F., Yellon D.M., Drew G.M., Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels, Am. J. Physiol. 1998, 275, H1542–H1547 10.1152/ajpheart.1998.275.5.H1542Search in Google Scholar PubMed

[10] Gho B.C., Schoemaker R.G., van den Doel M.A., Duncker D.J., Verdouw P.D. Myocardial protection by brief ischemia in noncardiac tissue, Circulation, 1996, 94, 2193–2200 10.1161/01.CIR.94.9.2193Search in Google Scholar PubMed

[11] Liem D.A., Verdouw P.D., Ploeg H., Kazim S., Duncker D.J., Sites of action of adenosine in interorgan preconditioning of the heart, Am. J. Physiol. Heart Circ. Physiol., 2002, 283, H29–H37 10.1152/ajpheart.01031.2001Search in Google Scholar

[12] Schoemaker R.G., Van Heijningen C.L., Bradykinin mediates cardiac preconditioning at a distance, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, H1571–H1576 10.1152/ajpheart.2000.278.5.H1571Search in Google Scholar

[13] Hu C.P., Peng J., Xiao L., Ye F., Deng H.W., Li Y.J., Effect of age on alpha-calcitonin gene-related peptide-mediated delayed cardioprotection induced by intestinal preconditioning in rats, Regul. Pept., 2002, 107, 137–143 in Google Scholar

[14] Xiao L., Lu R., Hu C.P., Deng H.W., Li Y.J., Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide, Eur. J. Pharmacol., 2001, 427, 131–135 in Google Scholar

[15] Tang Z.L., Dai W., Li Y.J., Deng H.W., Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine, Naunyn. Schmiedebergs Arch. Pharmacol., 1999, 359, 243–247 in Google Scholar

[16] Banerjee A., Locke-Winter C., Rogers K.B., Mitchell M.B., Brew E.C., Cairns C.B., Bensard D.D., Harken A.H., Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism, Circ. Res., 1993, 73, 656–670 10.1161/01.RES.73.4.656Search in Google Scholar

[17] Cohen M.V., Yang X.M., Liu G.S., Heusch G., Downey J.M., Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels, Circ. Res., 2001, 89, 273–278 in Google Scholar

[18] Miyazaki T., Zipes D.P., Protection against autonomic denervation following acute myocardial infarction by preconditioning ischemia, Circ. Res., 1989, 64, 437–448 10.1161/01.RES.64.3.437Search in Google Scholar

[19] Pasceri V., Lanza G.A., Patti G., Pedrotti P., Crea F., Maseri A., Preconditioning by transient myocardial ischemia confers protection against ischemiainduced ventricular arrhythmias in variant angina, Circulation, 1996, 94, 1850–1856 10.1161/01.CIR.94.8.1850Search in Google Scholar

[20] Airaksinen K.E., Ylitalo K.V., Peuhkurinen K.J., Ikaheimo M.J., Huikuri H.V., Heart rate variability during repeated arterial occlusion in coronary angioplasty, Am. J. Cardiol., 1995, 75, 877–881 in Google Scholar

[21] Huikuri H.V., Makikallio T.H., Heart rate variability in ischemic heart disease, Auton. Neurosci., 2001, 90, 95–101 in Google Scholar

[22] Woo M.A., Stevenson W.G., Moser D.K., Middlekauff H.R., Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure, J. Am. Coll. Cardiol., 1994, 23, 565–569 in Google Scholar

[23] Loukogeorgakis S.P., Panagiotidou A.T., Broadhead M.W., Remote Ischemic Preconditioning Provides Early and Late Protection Against Endothelial Ischemia-Reperfusion Injury in Humans: Role of the Autonomic Nervous System, J. Am. Coll. Cardiol., 2005, 46, 450–456 in Google Scholar

[24] Wu Z.K., Vikman S., Laurikka J., Pehkonen E., Iivainen T., Huikuri H.V., Tarkka M.R., Nonlinear heart rate variability in CABG patients and the preconditioning effect, Eur. J. Cardio-Thor. Surg. 2005, 28, 109–113 in Google Scholar

[25] Shizukuda Y., Iwamoto T., Mallet R.T., Downey H.F., Hypoxic preconditioning attenuates tunning caused by repeated coronary artery occlusions in the dog heart, Cardiovasc. Res., 1993, 27, 559–564 in Google Scholar

[26] Svorc P., Bracokova I., Preconditioning by hypoventilation increases ventricular arrhythmia threshold in Wistar rats, Physiol. Res., 2003, 52, 409–416 Search in Google Scholar

[27] Prudian F., Gantenbein M., Pelissier A.L., Attolini L., Bruguerolle B., Daily rhythms of the heart rate, temperature and locomotor activity are modified by anaesthetics in rats: A telemetric study, N. S. Arch. Pharmacol., 1997, 355, 774–778 in Google Scholar

[28] Pelissier A.L., Gantenbein M., Bruguerolle B., Caffeine-induced modification of heart rate, temperature, and motor activity circadian rhythms in rat, Physiol. Behav., 1998, 67, 81–88 in Google Scholar

[29] Gantenbein M., Attolini L., Bruguerolle B., Nicorandil affect diurnal rhythms of body temperature, heart rate and locomotor activity in rats, Eur. J. Pharmacol., 1998, 346, 125–130 in Google Scholar

[30] Svorc P., Bracokova I., Bacova I., Svorcova E., Acidbase balance and artificial controlled ventilation in Wistar rats: Chronobiological view. Abstract Book from The Third International Congress of Applied Chronobiology and Chronomedicine, 2009, Akko, Israel, p. 67 (abstract) Search in Google Scholar

[31] Jarsky T.M., Stephenson R., Effects of hypoxia and hypercapnia on circadian rhythms in the golden hamster (Mesocricetus auratus), J. Appl. Physiol., 2000, 89, 2130–2138 10.1152/jappl.2000.89.6.2130Search in Google Scholar PubMed

[32] Mortola J.P., Seifert E.L., Hypoxic depression of circadian rhythms in adult rats, J. Appl. Physiol., 2000, 88, 365–368 10.1152/jappl.2000.88.2.365Search in Google Scholar PubMed

[33] Bishop B., Silva G., Krasney J., Nakano H., Roberts A., Farkas G., Rifkin D., Shucard D., Ambient temperature modulates hypoxic-induced changes in rat body temperature and activity differentially, Am. J. Physiol., 2001, 280, R1190–R1196 10.1152/ajpregu.2001.280.4.R1190Search in Google Scholar

[34] Bosco G., Ionadi A., Panico S., Faralli F., Gagliardi R., Data P., Mortola J.P., Effects of hypoxia on the circadian patterns in men, High Alt. Med. Biol., 2003, 4, 305–318 in Google Scholar

[35] Kaplan J.L., Gao E., DeGaravilla L., Victain M., Minczak B., Dalsey W.C., Adenosine A1 antagonism attenuates atropine-resistant hypoxic bradycardia in rats, Acad. Emerg. Med., 2003, 10, 923–930 in Google Scholar

[36] Chanine R., Adam A., Yamaguchi N., Gaspo R., Regoli D., Nadeau R., Protective effects of bradykinin on the ischaemic heart: implication of the B1 receptor, Br. J. Pharmacol., 1993, 108, 318–322 10.1111/j.1476-5381.1993.tb12802.xSearch in Google Scholar

[37] Ohkuwa T., Itoh H., Yamamoto T., Minami C., Yamazaki Y., Effect of hypoxia on norepinephrine of various tissues in rats, Wilderness. Environ. Med., 2005, 16, 22–26 in Google Scholar

[38] Kawaguchi T., Tsubone H., Hori M., Ozaki H., Kuwahara M., Cardiovascular and autonomic nervous function during acclimatization to hypoxia in conscious rats, Auton. Neurosci., 2005, 117, 94–104 in Google Scholar

[39] Hayashida Y., Hirakawa H., Nakamura T., Maeda M., Chemoreceptors in autonomic responses to hypoxia in conscious rats. In: Zapata et al. (Eds.) Frontiers in Arterial Chemoreception, Plenum Press, New York, pp. 439–442, 1996 10.1007/978-1-4615-5891-0_67Search in Google Scholar

[40] Hinojosa-Laborde C., Mifflin S.W., Sex differences in blood pressure response to intermittent hypoxia in rats, Hypertension, 2005, 46, 1016–1021 in Google Scholar

[41] Kamasaki Y., Guo A.C., McDonald T.F., Protection by hypoxic preconditioning against hypoxiareoxygenation injury in guinea-pig papillary muscles, Cardiovasc. Res., 1997, 34, 313–322 in Google Scholar

[42] Ravingerova T., Løkebø J.E., Munch-Ellingsen J., Sundset R., Tande P., Ytrehus K., Mechanism of hypoxic preconditioning in guinea pig papillary muscles, Mol. Cell Biochem., 1998, 186, 53–60 in Google Scholar

Published Online: 2011-4-8
Published in Print: 2011-6-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow