Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 9, 2011

Activities of brain antioxidant enzymes, lipid and protein peroxidation

  • Anna Łukaszewicz-Hussain EMAIL logo
From the journal Open Medicine

Abstract

Organophosphate pesticides are known to induce oxidative stress and cause oxidative tissue damage, as has been reported in studies concerning acute and chronic intoxication with these compounds.

Our objective was to investigate the activities of brain antioxidant enzymes and malonyldialdehyde, as well as the level of carbonyl groups, in rats sub-chronically intoxicated with chlorpyrifos at doses of 0.2, 2 and 5 mg per kg of body weight per day. It was found that chlorpyrifos induces change in brain antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidise, but to a different degree in comparison to proper control values; however, the elevated antioxidant enzymes activities failed to check lipid and protein peroxidation in the brains of rats. Thus, in sub-chronic intoxication with chlorpyrifos, as evidenced by increased level of malonyldialdehyde and carbonyl groups, oxidative stress is induced.

Measurements of protein carbonyl groups appeared to give more consistent responses in the rats’ brains when compared to the malonyldialdehyde level after sub-chronic chlorpyrifos treatment.

[1] Toxilogical profile for chlorpyrifos, 1997. U.S. Dep. Of Health services, Public Health Service, Agency for Toxic Substances and Disease Registry Search in Google Scholar

[2] Baig S.A., Akhtera N.A., Ashfaq M., As M.R. Determination of the Organophosphorus Pesticide in Vegetables by High-Performance Liquid Chromatography. American-Eurasian J. Agric. & Environ. Sci., 2009, 6(5), 513–519 Search in Google Scholar

[3] Savolainen K. Understanding the toxic action of organophosphates. In: Krieger, R.I. (Ed.), In: Handbook of pesticide toxicology. 2001, vol. 2. Academic Press, USA, pp. 1013–1043 http://dx.doi.org/10.1016/B978-012426260-7/50053-710.1016/B978-012426260-7/50053-7Search in Google Scholar

[4] Sharma Y., Bashir S., Irshad M., Gupta S.D., Dogra T.D. Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology 2005, 206, 49–54. http://dx.doi.org/10.1016/j.tox.2004.06.06210.1016/j.tox.2004.06.062Search in Google Scholar

[5] Łukaszewicz-Hussain A. Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level. Food and Chem. Toxicol. 2008, 46, 82–86 http://dx.doi.org/10.1016/j.fct.2007.06.03810.1016/j.fct.2007.06.038Search in Google Scholar

[6] Łukaszewicz-Hussain, A. Role of oxidative stress in organophosphate insecticide toxicity-Short review. Pestic. Biochem. Physiol. 2010, 98, 145–150 http://dx.doi.org/10.1016/j.pestbp.2010.07.00610.1016/j.pestbp.2010.07.006Search in Google Scholar

[7] Vidyasagar J., Karunakar N., Reddy M.S., Rajnarayana K., Surender T., Krishna, D.R. Oxidative stress and antioxidant status in acute organophosphorus insecticide poisoning. Indian J. Pharmacol. 2004, 36(2), 76–79 Search in Google Scholar

[8] Kaur P., Radotra B., Minz R.W., Gill K.D. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neuro. Toxicology 2007, 28, 1208–1219 10.1016/j.neuro.2007.08.001Search in Google Scholar

[9] Milatovic D., Gupta R.C., Aschner M. Anticholinesterase toxicity, oxidative stress. Sci. World J. 2006, 6, 295–310 10.1100/tsw.2006.38Search in Google Scholar

[10] Tomlin C.D.S. The Pesticide Manual, A World Compendium, 14th ed.; British Crop Protection Council: Alton, Hampshire, UK, 2006, 186–187 Search in Google Scholar

[11] Sahin E., Gümüşlü S. Immobilization stress in rat tissues: alter actions in protein oxidation, lipid per oxidation and antioxidant defence system. Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 2007, 144, 342–347 http://dx.doi.org/10.1016/j.cbpc.2006.10.00910.1016/j.cbpc.2006.10.009Search in Google Scholar

[12] Levine R. L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R. Determination of carbonyl content in oxidatively modified proteins. Meth. Enzymol. 1990, 186, 464–478. http://dx.doi.org/10.1016/0076-6879(90)86141-H10.1016/0076-6879(90)86141-HSearch in Google Scholar

[13] Aebi H. E. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. http://dx.doi.org/10.1016/S0076-6879(84)05016-310.1016/S0076-6879(84)05016-3Search in Google Scholar

[14] Lowry O. H., Rosebrough A.L., Randall R.J. Protein measurement with the phenol reagent. J. Biol. Chem. 1951, 193, 265–275. Search in Google Scholar

[15] Curl C. L., Fenske R.A., Kissel J.C., Shirai J.H., Moate T.F., Griffith W., Coronado G., Thompson B. Evaluation of take-home organophosphorus pesticide exposure among agricultural workers and their children. Environ. Health Perspect. 2002, 110(12), 787–792. http://dx.doi.org/10.1289/ehp.02110078710.1289/ehp.021100787Search in Google Scholar PubMed PubMed Central

[16] Costa L. G. Current issues in organophosphate toxicology. Clin. Chim. Acta 2006, 336, 1–13 http://dx.doi.org/10.1016/j.cca.2005.10.00810.1016/j.cca.2005.10.008Search in Google Scholar

[17] Ranjbar A., Solhi H., Mashayekhi, F.J., Susanabdi A., Rezaie, A., Abdollahi M. Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ. Toxicol. and Pharmacol. 2005, 20, 88–91 http://dx.doi.org/10.1016/j.etap.2004.10.00710.1016/j.etap.2004.10.007Search in Google Scholar

[18] Goel A., Dani V., Hawan D.K. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity Chemico-Biological Interactions 2005, 156, 131–140 http://dx.doi.org/10.1016/j.cbi.2005.08.00410.1016/j.cbi.2005.08.004Search in Google Scholar

[19] Mates J. M., Perez-Gomez C., Nunez D.C.I. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603 http://dx.doi.org/10.1016/S0009-9120(99)00075-210.1016/S0009-9120(99)00075-2Search in Google Scholar

[20] White R. E. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol. Ther. 1991, 49, 21–42. http://dx.doi.org/10.1016/0163-7258(91)90020-M10.1016/0163-7258(91)90020-MSearch in Google Scholar

[21] Kovacic P. Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress. Curr. Med. Chem. 2003, 10, 2705–2709 http://dx.doi.org/10.2174/092986703345631410.2174/0929867033456314Search in Google Scholar

[22] Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Met. Rev., 2000, 32, 307–326 http://dx.doi.org/10.1081/DMR-10010233610.1081/DMR-100102336Search in Google Scholar

[23] Ho Y. S., Gargano M., Cao J., Bronson R.T., Wittman T., Fazekas T. Reduced fertility in female mice lacking copper-zinc dismutase. J. Biol. Chem. 1998, 203, 7765–7769 http://dx.doi.org/10.1074/jbc.273.13.776510.1074/jbc.273.13.7765Search in Google Scholar

[24] Kono Y., Fridovich I. Superoxide radical inhibits catalase, J. Biol. Chem. 1982, 257, 5751–5754 10.1016/S0021-9258(19)83842-5Search in Google Scholar

[25] Yu B. P. Cellular defenses against damage from reactive oxygen species, Physiol. Rev. 1994, 74, 139–162 10.1152/physrev.1994.74.1.139Search in Google Scholar PubMed

[26] Girotti A. W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 1998, 39, 1529–1542 10.1016/S0022-2275(20)32182-9Search in Google Scholar

[27] Mueller S., Riedel H.D., Stremmel W. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood, 1997, 90, 4973–4978 10.1182/blood.V90.12.4973Search in Google Scholar

[28] Shacter E. Protein oxidative damage. Methods Enzym., 2000, 319, 428–436 http://dx.doi.org/10.1016/S0076-6879(00)19040-810.1016/S0076-6879(00)19040-8Search in Google Scholar

[29] Possamai F. P., Fortunato J.J., Feier G., Agostinho F.R., Quevedo J., Filho, D.W., Dal-Pizzol F. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environm. Toxicol. Pharmacol. 2007, 23, 198–204 http://dx.doi.org/10.1016/j.etap.2006.09.00310.1016/j.etap.2006.09.003Search in Google Scholar

[30] Yarsan E., Tanyuksel M., Celik S., Aydin A. Effects of aldicarb and malathion on lipid peroxidation. Bull. Environ. Contam. Toxicol. 1999, 63, 575–581. http://dx.doi.org/10.1007/s00128990101910.1007/s001289901019Search in Google Scholar

[31] Haberland M. E., Fong D., Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits, Science, 1988, 241, 215–218 http://dx.doi.org/10.1126/science.245534610.1126/science.2455346Search in Google Scholar

[32] Kim J. G., Sabbagh F., Santanam N., Wilcox J. N., Medford R.M., Parthasarathy S. Generation of a polyclonal antibody against lipid peroxidemodified proteins, Free Radical Biol. Med., 1997, 23, 251–259 http://dx.doi.org/10.1016/S0891-5849(96)00615-610.1016/S0891-5849(96)00615-6Search in Google Scholar

[33] Videira R. A., Antunes-Madeira M.C., Lopes V.I., Madeira, V.M. Changes induced by malathion, methylparation and parathion on membrane lipid physicochemical properties correlate with their toxicity. Biochem. Biophys. Acta 2001, 1511, 360–368 http://dx.doi.org/10.1016/S0005-2736(01)00295-410.1016/S0005-2736(01)00295-4Search in Google Scholar

[34] Evans P., Larys L., Halliwell B. Measurement of protein carbonyls in human brain tissues. Methods Enzym. 1999, 300, 145–156 http://dx.doi.org/10.1016/S0076-6879(99)00122-610.1016/S0076-6879(99)00122-6Search in Google Scholar

[35] Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R. Protein carbonyl groups level as biomarker of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38 http://dx.doi.org/10.1016/S0009-8981(03)00003-210.1016/S0009-8981(03)00003-2Search in Google Scholar

[36] Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol. 1990, 186, 464–478 http://dx.doi.org/10.1016/0076-6879(90)86141-H10.1016/0076-6879(90)86141-HSearch in Google Scholar

Published Online: 2011-8-9
Published in Print: 2011-10-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11536-011-0065-6/html
Scroll to top button