Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 23, 2013

Effects of Rhodiola rosea extract on passive avoidance tests in rats

  • Damianka Getova EMAIL logo and Anita Mihaylova
From the journal Open Medicine

Abstract

The purpose was to evaluate the effects of extract of Rhodiola rosea on learning and memory processes on rats. The two series of experiments were carried out — on naïve rats and on rats with scopolamine-impaired memory. The passive avoidance tests were performed — step-down and step-through. The latency of reactions in seconds was observed in both tests. Naïve rats treated with the extract in showed the prolongation of latency of reaction of both step-down and step-through passive avoidances compared to the controls. Rats with scopolamine-impaired memory showed shorter latency of reaction in both passive avoidance tests compared to the controls. Rats treated with the extract of Rh. Rosea with scopolamine-impaired memory prolonged the latency in both passive avoidance tests compared to scopolamine group. It was found that the extract of Rh. Rosea improved performance during learning session, short and long memory retrieval tests in naïve rats. Scopolamine impaired the learning and memory retrieval of rats, but Rh. Rosea pretreatment improved performance and turned off the deterioration effect of scopolamine on these brain functions probably by non-specific mechanisms on cholinergic neurons. The studied plant extract can be a candidate for treatment of dementia and other memory disturbances.

[1] Perfumi M., Mahioli L., Adaptogenic and CNS effects on single dose of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice, Phytother Res, 2007, 21, 37–43 http://dx.doi.org/10.1002/ptr.201310.1002/ptr.2013Search in Google Scholar

[2] Qu ZQ., Zhou Y., Zeng YS., Li Y., Cheng Pl., Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebrovascular streptozotocin in rats: implication of anti-oxidative and neuroprotective effects, Biomedical and Enviromental Science, 2009, 22, 318–326 http://dx.doi.org/10.1016/S0895-3988(09)60062-310.1016/S0895-3988(09)60062-3Search in Google Scholar

[3] Panossian A., Wilkman G., Sarris J., Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy, Phytomedicine, 2010, 7, 481–493 http://dx.doi.org/10.1016/j.phymed.2010.02.00210.1016/j.phymed.2010.02.002Search in Google Scholar PubMed

[4] Elamen A., Dragland S., Klemsdal SS., Bioactive compounds produced by clones of Rhodiola rosea maintained in the Norwegian germplasm collection, Pharmazie, 2010, 65, 618–23 Search in Google Scholar

[5] Staneva J., Todorova M., Neykov N., Evstatieva L,. Ultrasonically assisted extraction of total phenols and flavonoids from Rhodiola rosea, Natural Product Communications, 2009, 4, 935–938 10.1177/1934578X0900400712Search in Google Scholar

[6] Khakpai F., Nasehi M., Haeri-Rohani A., Eidi A., Zarrindast MR., Scopolamine induced memory impairment; possible involvement of NMDA receptors mechanisms of dorsal hippocampus and/or septum, Behavioral Brain Research, 2012, 231, 1–10 http://dx.doi.org/10.1016/j.bbr.2012.02.04910.1016/j.bbr.2012.02.049Search in Google Scholar PubMed

[7] Park SJ., Kim DH., Jung JM., Kim JM., Cai M., Liu X., et al, The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice, Europian Journal of Pharmacology, 2012, 676, 64–70 http://dx.doi.org/10.1016/j.ejphar.2011.11.05010.1016/j.ejphar.2011.11.050Search in Google Scholar PubMed

[8] Knox LT., Jing Y., Fleete MS., Collie VD., Zhang H., Liu P., Scopolamine impairs behavioral function and arginine metabolism in the rat dentate gyrus, Neuropharmacology, 2011, 61, 1452–1462 http://dx.doi.org/10.1016/j.neuropharm.2011.08.04210.1016/j.neuropharm.2011.08.042Search in Google Scholar PubMed

[9] Klinkenberg I., Blokland A., A comparison of scopolamine and biperiden as a rodent model for cholinergic cognitive impairment, Psychopharmacology (Berl), 2011, 15, 549–566 http://dx.doi.org/10.1007/s00213-011-2171-110.1007/s00213-011-2171-1Search in Google Scholar PubMed PubMed Central

[10] Evstatieva L., Todorova M., Antonova D., Quality control of extracts of Rhodiola rosea L. based on the content of salidroside and rosavines, Proc, 5 CMAPSEEC, 2011, 208, 2–5 Search in Google Scholar

[11] Evstatieva L., Todorova M., Antonova D., Staneva J., Chemical composition of the essential oils of Rhodiola rosea L. of three different origins, Pharmacognosy Mag, 2010, 6, 256–258 http://dx.doi.org/10.4103/0973-1296.7178210.4103/0973-1296.71782Search in Google Scholar PubMed PubMed Central

[12] Kesner RP., Churchwell JC., An Analysis of rat prefrontal cortex in mediating executive functions, Neurobiol, Learn, Memory, 2011, 96, 417–31 http://dx.doi.org/10.1016/j.nlm.2011.07.00210.1016/j.nlm.2011.07.002Search in Google Scholar PubMed

[13] Shi TY., Feng SF., Xing JH., WU JM., Li XQ., Zhang N., et al, Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and h(2)o (2)-induced neurotoxicity in vitro, Neurotox Res, 2012, 21, 358–367 http://dx.doi.org/10.1007/s12640-011-9290-710.1007/s12640-011-9290-7Search in Google Scholar PubMed

[14] Tulsawani B., Meena DK., Shukla H., Sharma P., Meena RV., Gupta V., et al., Ninety days of repeated gavage administration of Rhodiola extract in rats, J Appl Toxicology, 2011, 10, 1009–1015 Search in Google Scholar

[15] Petkov VD., Yonkov D., Mosharoff A., Kambourova T., Alova L., Petkov VV., et al, Effects of alcohol aqueous extract from Rhodiola rosea L. roots on learning and memory, Acta Physiol Pharmacol Bulg, 1986, 12, 3–16 Search in Google Scholar

[16] Huang SC., Lee FT., Kuo TY., Yang JH., Chien CT., Attenuation of long-term Rhodiola rosea supplementation on exhaustive swimming evoked oxidative stress in the rat, Chin J Physiol, 2009, 52, 316–324 http://dx.doi.org/10.4077/CJP.2009.AMH02910.4077/CJP.2009.AMH029Search in Google Scholar

[17] Brito GH., Davis BJ., Stopp LC., Stanton NE., Memory and septo-hippocampal cholinergic system in the rat, Psychopharmacology (Berlin), 1983, 81, 315–20 http://dx.doi.org/10.1007/BF0042756910.1007/BF00427569Search in Google Scholar PubMed

[18] Falsafi SK., Deli A., Höger H., Pollak A., Lubec G., Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor system, PLoS ONE, 2012, 7, e32082 http://dx.doi.org/10.1371/journal.pone.003208210.1371/journal.pone.0032082Search in Google Scholar PubMed PubMed Central

[19] Wiedenfield H., Dumaa M., Malinowski M., Furmanowa M., Naratuya S., Phytochemical and analytical studies of extracts from Rhodiola rosea and Rhodiola quadrifolia, Pharmazie, 2007, 64, 308–11. Search in Google Scholar

[20] Edwards D., Heufelder A., Zimmermann A., Therapeutic effects and safety of Rhodiola rosea extract WS 1375 in subjects with life-stress symptoms-results of an open-label study, Phythother Res, 2012, doi:10.1002/ptr.3712. 10.1002/ptr.3712Search in Google Scholar PubMed

Published Online: 2013-1-23
Published in Print: 2013-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.2.2023 from https://www.degruyter.com/document/doi/10.2478/s11536-012-0124-7/html
Scroll Up Arrow