Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 6, 2013

Ethical considerations in the use of brain-computer interfaces

Emilia Mikołajewska and Dariusz Mikołajewski
From the journal Open Medicine

Abstract

Nervous system disorders are among the most severe disorders. Significant breakthroughs in contemporary clinical practice may provide brain-computer interfaces (BCIs) and neuroprostheses (NPs). The aim of this article is to investigate the extent to which the ethical considerations in the clinical application of brain-computer interfaces and associated threats are being identified. Ethical considerations and implications may significantly influence further development of BCIs and NPs. Moreover, there is significant public interest in supervising this development. Awareness of BCIs’ and NPs’ threats and limitations allow for wise planning and management in further clinical practice, especially in the area of long-term neurorehabilitation and care.

[1] Mikołajewska E., Mikołajewski D., Neuroprostheses for increasing disabled patients’ mobility and control, Adv Clin Exp Med, 2012, 21, 263–272 Search in Google Scholar

[2] Mikołajewska E., Mikołajewski D., Technical and medical problems concerning wider use of neuroprostheses in patients with neurologic disorders, JNNN, 2012, 1, 119–123 Search in Google Scholar

[3] Hansson S. O., Implant ethics, J Med Ethics, 2005, 31, 519–525 http://dx.doi.org/10.1136/jme.2004.00980310.1136/jme.2004.009803Search in Google Scholar PubMed PubMed Central

[4] Clausen J., Moving minds: ethical aspects of neural motor prostheses, Biotechnol J, 2008, 3, 1493–1501 http://dx.doi.org/10.1002/biot.20080024410.1002/biot.200800244Search in Google Scholar PubMed

[5] Saha S., Chhatbar P., The future of implantable neuroprosthetic devices: ethical considerations, J Long Term Eff Med Implants, 2009, 19, 123–137 http://dx.doi.org/10.1615/JLongTermEffMedImplants.v19.i2.4010.1615/JLongTermEffMedImplants.v19.i2.40Search in Google Scholar

[6] Glannon W., Stimulating brains, altering minds, J Med Ethics, 2009, 35, 289–292 http://dx.doi.org/10.1136/jme.2008.02778910.1136/jme.2008.027789Search in Google Scholar PubMed

[7] Ford P. J., Kubu C. S., Stimulating debate: ethics in a multidisciplinary functional neurosurgery committee, J Med Ethics, 2006, 32, 106–109 http://dx.doi.org/10.1136/jme.200X.01315110.1136/jme.200X.013151Search in Google Scholar PubMed PubMed Central

[8] Mikołajewska E., Biofeedback as the element of the neurorehabilitation, J Health Sci, 2012, 2, 135–148 Search in Google Scholar

[9] Xu J., Shen L. X., Yan C. H., et al. Personal characteristics related to the risk of adolescent internet addiction: a survey in Shanghai, China. BMC Public Health, 2012, 12: 1106 http://dx.doi.org/10.1186/1471-2458-12-110610.1186/1471-2458-12-1106Search in Google Scholar PubMed PubMed Central

[10] Heinz A., Kipke R., Heimann H., et al., Cognitive neuroenhancement: false assumptions in the ethical debate, J Med Ethics, 2012, 38, 372–375 http://dx.doi.org/10.1136/medethics-2011-10004110.1136/medethics-2011-100041Search in Google Scholar PubMed

[11] Shaw D. M., Neuroenhancers, addiction and research ethics, J Med Ethics, 2012, 38, 605–608. http://dx.doi.org/10.1136/medethics-2012-10061610.1136/medethics-2012-100616Search in Google Scholar PubMed

[12] Warvick K., I, cyborg, Champaign: University of Illinois Press 2004 Search in Google Scholar

[13] Honeybul S., Gillett G. R., Ho K. M., et al., Neurotrauma and the rule of rescue, J Med Ethics 2011, 37, 707–710 http://dx.doi.org/10.1136/medethics-2011-10008110.1136/medethics-2011-100081Search in Google Scholar PubMed

[14] Breshears J. D., Gaona C. M., Roland J. L., et al., Decoding motor signals from the pediatric cortex: implications for brain-computer interfaces in children, Pediatrics, 2011, 128, e160–168 http://dx.doi.org/10.1542/peds.2010-151910.1542/peds.2010-1519Search in Google Scholar PubMed

[15] Roland J., Miller K., Freudenburg Z., et al., The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications, J Neural Eng, 2011, 8, 046013 http://dx.doi.org/10.1088/1741-2560/8/4/04601310.1088/1741-2560/8/4/046013Search in Google Scholar PubMed

[16] Kübler A., Birbaumer N., Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?, Clin Neurophysiol, 2008, 119, 2658–2666 http://dx.doi.org/10.1016/j.clinph.2008.06.01910.1016/j.clinph.2008.06.019Search in Google Scholar PubMed PubMed Central

[17] Kübler A., Furdea A., Halder S., et al. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Ann N Y Acad Sci, 2009, 1157, 90–100 http://dx.doi.org/10.1111/j.1749-6632.2008.04122.x10.1111/j.1749-6632.2008.04122.xSearch in Google Scholar PubMed

[18] Haselager P., Vlek R., Hill J., et al., A note on ethical aspects of BCI, Neural Netw, 2009, 22, 1352–1357. http://dx.doi.org/10.1016/j.neunet.2009.06.04610.1016/j.neunet.2009.06.046Search in Google Scholar PubMed

[19] Jox R. J., Schaider A., Marckmann G., et al., Medical futility at the end of life: the perspectives of intensive care and palliative care clinicians, J Med Ethics, 2012, 38, 540–545 http://dx.doi.org/10.1136/medethics-2011-10047910.1136/medethics-2011-100479Search in Google Scholar PubMed

[20] McFarland D. J., Sarnacki W. A., Wolpaw J. R., Should the parameters of a BCI translation algorithm be continually adapted?, J Neurosci Methods, 2011, 199, 103–107 http://dx.doi.org/10.1016/j.jneumeth.2011.04.03710.1016/j.jneumeth.2011.04.037Search in Google Scholar PubMed PubMed Central

[21] Müller S., Walter H., Reviewing autonomy: Implications of the neurosciences and the free will debate for the principle of respect for the patient’s autonomy. Camb Q Healthc Ethics, 2010, 19, 205–217 http://dx.doi.org/10.1017/S096318010999047810.1017/S0963180109990478Search in Google Scholar PubMed

[22] Shannon C. E., A mathematical theory of communication, The Bell System Technical Journal, 1948, 27, 379–423, 623–656 http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x10.1002/j.1538-7305.1948.tb01338.xSearch in Google Scholar

[23] van den Brand R., Heutschi J., Barraud Q., et al., Restoring voluntary control of locomotion after paralyzing spinal cord injury, Science, 2012, 336, 1182–1185 http://dx.doi.org/10.1126/science.121741610.1126/science.1217416Search in Google Scholar PubMed

[24] Dominici N., Keller U., Vallery H., et al., Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders, Nat Med, 2012, 18, 1142–1147 http://dx.doi.org/10.1038/nm.284510.1038/nm.2845Search in Google Scholar PubMed

[25] Voge C. M., Stegemann J. P., Carbon nanotubes in neural interfacing applications, J Neural Eng, 2011, 8, 011001 http://dx.doi.org/10.1088/1741-2560/8/1/01100110.1088/1741-2560/8/1/011001Search in Google Scholar PubMed

[26] Kotchetkov I. S., Hwang B. Y., Appelboom G., et al., Brain-computer interfaces: military, neurosurgical, and ethical perspective, Neurosurg Focus, 2010, 28, E25 http://dx.doi.org/10.3171/2010.2.FOCUS102710.3171/2010.2.FOCUS1027Search in Google Scholar PubMed

[27] Vlek R. J., Steines D., Szibbo D., et al., Ethical issues in brain-computer interface research, development, and dissemination, J Neurol Phys Ther, 2012, 36, 94–99 http://dx.doi.org/10.1097/NPT.0b013e31825064cc10.1097/NPT.0b013e31825064ccSearch in Google Scholar PubMed

Published Online: 2013-12-6
Published in Print: 2013-12-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow