Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 13, 2014

Biofilm formation and serum susceptibility in Pseudomonas aeruginosa

Greta Mikucionyte, Asta Dambrauskiene, Erika Skrodeniene and Astra Vitkauskiene
From the journal Open Medicine

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is one of the most important opportunistic pathogens. The pathogenicity of P. aeruginosa has been associated with multiple bacterial virulence factors. The aim of this study was to evaluate the association between P. aeruginosa strains obtained from various clinical samples and resistance to antibiotics and pathogenicity factors, such as resistance to serum bactericidal activity and biofilm formation. This study included 121 P. aeruginosa strains isolated from clinical samples; 65 of the isolated P. aeruginosa strains were carbapenem-resistant, and 56 were carbapenem-sensitive. Carbapenem-resistant P. aeruginosa strains were more often resistant to the majority of tested antibiotics, compared to carbapenem-sensitive strains. We did not find any statistically significant difference between resistance to carbapenems and serum resistance and ability of tested P. aeruginosa strains to produce biofilms. Carbapenem-resistant P. aeruginosa strains were recovered from the urinary tract significantly more often (75.0%) than carbapenem-sensitive P. aeruginosa strains (25.0%). Carbapenem-sensitive P. aeruginosa strains were recovered significantly more often from the respiratory tract than carbapenem-resistant strains, 60.0% and 40.0%, respectively. All the P. aeruginosa strains recovered from blood were serum-resistant. P. aeruginosa strains recovered from the respiratory tract and wounds were significantly frequently serum sensitive, 95.6% and 56.6%, respectively. We did not find any differences in biofilm production among the P. aeruginosa strains recovered from different sources.

[1] Hauser A.R., Sriram P., Severe Pseudomonas aeruginosa infections. Tackling the conundrum of drug resistance. Postgrad.Med, 2005, 117, 41–48 http://dx.doi.org/10.3810/pgm.2005.01.157110.3810/pgm.2005.01.1571Search in Google Scholar

[2] Hoban D.J., Biedenbach D.J., Mutnick A.H., Jones R.N., Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America: results of the SENTRY Antimicrobial Surveillance Study (2000). Diagn.Microbiol.Infect.Dis, 2003, 45, 279–285 http://dx.doi.org/10.1016/S0732-8893(02)00540-010.1016/S0732-8893(02)00540-0Search in Google Scholar

[3] Giamarellou H., Prescribing guidelines for severe Pseudomonas infections. J.Antimicrob.Chemother, 2002, 49, 229–233 http://dx.doi.org/10.1093/jac/49.2.22910.1093/jac/49.2.229Search in Google Scholar PubMed

[4] Saiman L., Siegel J., Infection control in cystic fibrosis. Clin.Microbiol.Rev, 2004, 17, 57–71 http://dx.doi.org/10.1128/CMR.17.1.57-71.200410.1128/CMR.17.1.57-71.2004Search in Google Scholar PubMed PubMed Central

[5] Cevahir N., Kaleli I., Demir M., Yildirim U., Cevik E., Gurbuz M., Investigation of serum resistance for Pseudomonas aeruginosa and Acinetobacter baumannii strains. Mikrobiyol.Bul, 2006, 40, 251–255 Search in Google Scholar

[6] Vitkauskiene A., Scheuss S., Sakalauskas R., Dudzevicius V., Sahly H., Pseudomonas aeruginosa strains from nosocomial pneumonia are more serum resistant than P. aeruginosa strains from noninfectious respiratory colonization processes. Infection, 2005, 33, 356–361 http://dx.doi.org/10.1007/s15010-005-5044-x10.1007/s15010-005-5044-xSearch in Google Scholar PubMed

[7] Schiller N.L., Millard R.L., Pseudomonas-infected cystic fibrosis patient sputum inhibits the bactericidal activity of normal human serum. Pediatr.Res, 1983, 17, 747–752 http://dx.doi.org/10.1203/00006450-198309000-0001310.1203/00006450-198309000-00013Search in Google Scholar PubMed

[8] Young L.S., Armstrong D., Human immunity to Pseudomonas aeruginosa. I. In-vitro interaction of bacteria, polymorphonuclear leukocytes, and serum factors. J.Infect.Dis, 1972, 126, 257–276 http://dx.doi.org/10.1093/infdis/126.3.25710.1093/infdis/126.3.257Search in Google Scholar PubMed

[9] Schiller N.L., Millard R.L., Pseudomonas-infected cystic fibrosis patient sputum inhibits the bactericidal activity of normal human serum. Pediatr.Res, 1983, 17, 747–752 http://dx.doi.org/10.1203/00006450-198309000-0001310.1203/00006450-198309000-00013Search in Google Scholar

[10] Hancock R.E., Mutharia L.M., Chan L., Darveau R.P., Speert D.P., Pier G.B., Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect.Immun, 1983, 42, 170–177 10.1128/iai.42.1.170-177.1983Search in Google Scholar PubMed PubMed Central

[11] Pier G.B., Ames P., Mediation of the killing of rough, mucoid isolates of Pseudomonas aeruginosa from patients with cystic fibrosis by the alternative pathway of complement. J.Infect.Dis, 1984, 150, 223–228 http://dx.doi.org/10.1093/infdis/150.2.22310.1093/infdis/150.2.223Search in Google Scholar PubMed

[12] Zlosnik J.E., Gunaratnam L.C., Speert D.P., Serum susceptibility in clinical isolates of burkholderia cepacia complex bacteria: development of a growth-based assay for high throughput determination. Front Cell Infect.Microbiol, 2012, 2, 67 10.3389/fcimb.2012.00067Search in Google Scholar PubMed PubMed Central

[13] Crespo M.P., Woodford N., Sinclair A., Kaufmann M.E., Turton J., Glover J., Velez J.D., Castaneda C.R., Recalde M., Livermore D.M., Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallobeta-lactamase, in a tertiary care center in Cali, Colombia. J.Clin.Microbiol, 2004, 42, 5094–5101 http://dx.doi.org/10.1128/JCM.42.11.5094-5101.200410.1128/JCM.42.11.5094-5101.2004Search in Google Scholar PubMed PubMed Central

[14] Hall-Stoodley L., Stoodley P., Evolving concepts in biofilm infections. Cell Microbiol, 2009, 11, 1034–1043 http://dx.doi.org/10.1111/j.1462-5822.2009.01323.x10.1111/j.1462-5822.2009.01323.xSearch in Google Scholar PubMed

[15] Mittal R., Sharma S., Chhibber S., Aggarwal S., Gupta V., Harjai K., Correlation between serogroup, in vitro biofilm formation and elaboration of virulence factors by uropathogenic Pseudomonas aeruginosa. FEMS Immunol.Med.Microbiol, 2010, 58, 237–243 http://dx.doi.org/10.1111/j.1574-695X.2009.00627.x10.1111/j.1574-695X.2009.00627.xSearch in Google Scholar PubMed

[16] Leid J.G., Kerr M., Selgado C., Johnson C., Moreno G., Smith A., Shirtliff M.E., O’Toole G.A., Cope E.K., Flagellum-mediated biofilm defense mechanisms of Pseudomonas aeruginosa against host-derived lactoferrin. Infect.Immun, 2009, 77, 4559–4566 http://dx.doi.org/10.1128/IAI.00075-0910.1128/IAI.00075-09Search in Google Scholar PubMed PubMed Central

[17] Tam V.H., Chang K.T., Abdelraouf K., Brioso C.G., Ameka M., McCaskey L.A., Weston J.S., Caeiro J.P., Garey K.W., Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob.Agents Chemother, 2010, 54, 1160–1164 http://dx.doi.org/10.1128/AAC.01446-0910.1128/AAC.01446-09Search in Google Scholar PubMed PubMed Central

[18] Hocquet D., Berthelot P., Roussel-Delvallez M., Favre R., Jeannot K., Bajolet O., Marty N., Grattard F., Mariani-Kurkdjian P., Bingen E., Husson M.O., Couetdic G., Plesiat P., Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob.Agents Chemother, 2007, 51, 3531–3536 http://dx.doi.org/10.1128/AAC.00503-0710.1128/AAC.00503-07Search in Google Scholar PubMed PubMed Central

[19] European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoints tables for interpretation of MICs and zone diameters, Version 2.0. 2012 Search in Google Scholar

[20] Sahly H., Aucken H., Benedi V.J., Forestier C., Fussing V., Hansen D.S., Ofek I., Podschun R, Sirot D, Tomas JM, Sandvang D, and Ullmann U, Increased serum resistance in Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob.Agents Chemother, 2004, 48, 3477–3482 http://dx.doi.org/10.1128/AAC.48.9.3477-3482.200410.1128/AAC.48.9.3477-3482.2004Search in Google Scholar PubMed PubMed Central

[21] Vitkauskiene A., Scheuss S., Sakalauskas R., Dudzevicius V., Sahly H., Pseudomonas aeruginosa strains from nosocomial pneumonia are more serum resistant than P. aeruginosa strains from noninfectious respiratory colonization processes. Infection, 2005, 33, 356–361 http://dx.doi.org/10.1007/s15010-005-5044-x10.1007/s15010-005-5044-xSearch in Google Scholar PubMed

[22] Christensen G.D., Simpson W.A., Bisno A.L., Beachey E.H., Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect.Immun, 1982, 37, 318–326 10.1128/iai.37.1.318-326.1982Search in Google Scholar PubMed PubMed Central

[23] Martinez J.L., Baquero F., Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol.Rev, 2002, 15, 647–679 http://dx.doi.org/10.1128/CMR.15.4.647-679.200210.1128/CMR.15.4.647-679.2002Search in Google Scholar PubMed PubMed Central

[24] Drahovska H., Slobodnikova L., Kocincova D., Seman M., Koncekova R., Trupl J., Turna J., Antibiotic resistance and virulence factors among clinical and food enterococci isolated in Slovakia. Folia Microbiol, 2004, 49, 763–768 http://dx.doi.org/10.1007/BF0293156210.1007/BF02931562Search in Google Scholar PubMed

[25] Baylan O., Nazik H., Bektore B., Citil B.E., Turan D., Ongen B., Ozyurt M., Acikel C.H., Haznedaroglu T., The relationship between antibiotic resistance and virulence factors in urinary Enterococcus isolates. Mikrobiyol.Bul, 2011, 45, 430–445 Search in Google Scholar

[26] Lagatolla C., Tonin E.A., Monti-Bragadin C., Dolzani L., Gombac F., Bearzi C., Edalucci E., Gionechetti F., Rossolini G.M., Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-beta-lactamase determinants in European hospital. Emerg.Infect.Dis, 2004, 10, 535–538 http://dx.doi.org/10.3201/eid1003.02079910.3201/eid1003.020799Search in Google Scholar PubMed PubMed Central

[27] Viedma E., Juan C., Villa J., Barrado L., Orellana M.A., Sanz F., Otero J.R., Oliver A., Chaves F., VIM-2-producing Multidrug-Resistant Pseudomonas aeruginosa ST175 Clone, Spain. Emerg.Infect.Dis, 2012, 18, 1235–1241 10.3201/eid1808.111234Search in Google Scholar PubMed PubMed Central

[28] Kouda S., Ohara M., Onodera M., Fujiue Y., Sasaki M., Kohara T., Kashiyama S., Hayashida S., Harino T., Tsuji T., Itaha H., Gotoh N., Matsubara A., Usui T., Sugai M., Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J.Antimicrob.Chemother, 2009, 64, 46–51 http://dx.doi.org/10.1093/jac/dkp14210.1093/jac/dkp142Search in Google Scholar PubMed

[29] Manu D., Lupan I., Popescu O., Mechanisms of pathogenesis and antibiotics resistance in Escherichia coli. Annals of RSCB, 2011, 2, 7–19 Search in Google Scholar

[30] Harjai K., Khandwahaa R.K., Mittal R., Yadav V., Gupta V., Sharma S., Effect of pH on production of virulence factors by biofilm cells of Pseudomonas aeruginosa. Folia Microbiol, 2005, 50, 99–102 http://dx.doi.org/10.1007/BF0293145510.1007/BF02931455Search in Google Scholar PubMed

[31] Hostacka A., Ciznar I., Slobodnikova L., Kotulova D., Clinical pseudomonas aeruginosa: potential factors of pathogenicity and resistance to antimicrobials. Folia Microbiol, 2006, 51, 633–638 http://dx.doi.org/10.1007/BF0293163110.1007/BF02931631Search in Google Scholar PubMed

Published Online: 2014-2-13
Published in Print: 2014-4-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow