Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 1, 2008

Hydrolysis of titanium sulphate compounds

Barbara Grzmil, Daniel Grela and Bogumił Kic
From the journal Chemical Papers

Abstract

The influence of TiOSO4 and free sulphuric acid concentrations in the starting solution on the degree of titanyl sulphate conversion to hydrated titanium dioxide and post-hydrolytic sulphuric acid was studied. Titanyl sulphate solution, an intermediate product in the commercial preparation of titanium dioxide pigments by sulphate route, was used. It was found that the degree of hydrolysis markedly depends on the studied parameters. The lower was the content of TiOSO4 in the starting solution, the higher conversion was achieved. The degree of hydrolysis at the final stage varied between 81 % (420 g TiOSO4 dm−3, 216 g H2SO4 dm−3) and 92 % (300 g TiOSO4 dm−3, 216 g H2SO4 dm−3). The same relation was obtained when changing the concentration of free H2SO4 in the starting solution. The degree of hydrolysis at the final stage varied between 49 % (261 g H2SO4 dm−3, 340 g TiOSO4 dm−3) and 96 % (136 g H2SO4 dm−3, 340 g TiOSO4 dm−3). The particle size of the obtained hydrated titanium dioxide (HTD) also depends on the initial solution composition.

[1] Bavykin, D. V., Dubovitskaya, V. P., Vorontsov, A. V., & Parmon, V. N. (2007). Effect of TiOSO4 hydrotermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity. Research on Chemical Intermediates, 33, 449–464. DOI: 10.1163/156856707779238702. http://dx.doi.org/10.1163/156856707779238702Search in Google Scholar

[2] Bavykin, D. V., Savinov, E. N., & Smirniotis, P. G. (2003). Kinetics of the TiO2 films growth at the hydrothermal hydrolysis of TiOSO4. Reaction Kinetics and Catalysis Letters, 79, 77–84. DOI: 10.1023/A:1024107701071. http://dx.doi.org/10.1023/A:1024107701071Search in Google Scholar

[3] Blumenfeld, J. (1924). U.S. Patent No.1,504,672. Washington, D.C.: U.S. Patent Office. Search in Google Scholar

[4] Cheng, H., Ma, J., Zhao, Z., & Qi, L. (1995). Hydrotermal preparation of uniform nanosize rutile and anatase particles. Chemistry of Materials, 7, 663–671. DOI: 10.1021/cm00052a010. http://dx.doi.org/10.1021/cm00052a010Search in Google Scholar

[5] Chung, F. H., & Smith, D. K. (2000). Industrial application of X-ray diffraction. New York-Basel: Marcel Dekker, Inc. Search in Google Scholar

[6] Dąbrowski, W., Tymejczyk, A., & Lubkowska, A. (2001). Włlaściwości i zastosowanie pigmentów dwutlenku tytanu (Properties and application of titanium dioxide pigments). Police: Chemical Works “Police” S.A. Search in Google Scholar

[7] Dobrovolskii, I. P. (1988). Khimia i tekhnologia oksidnyh sojedinenii titana (The chemistry and technology of the oxide compounds of titanium). Sverdlovsk: UrO AN SSSR. Search in Google Scholar

[8] Grzmil, B., Grela, D., & Kic, B. (2006). Studies on the hydrolysis process of titanium sulfate compounds. Polish Journal of Chemical Technology, 8(3), 19–21. Search in Google Scholar

[9] Gussman, N. (2005). Titanium dioxide: from black sand to white pigment. Chemical Engineering Progress, 101(6), 64–64. Search in Google Scholar

[10] Hidalgo, M. C., & Bahnemann, D. (2005). Highly photoactive supported TiO2 prepared by thermal hydrolysis of TiOSO4: optimisation of the method and comparison with other synthetic routes. Applied Catalysis B: Enviromental, 61, 259–266. DOI: 101016/j.apeatb.2005.06.004. http://dx.doi.org/10.1016/j.apcatb.2005.06.004Search in Google Scholar

[11] Karvinen, S. (1995). U.S. Patent No. 5,443,811. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

[12] Lawes, G., & Jame, A. M. (1987). Scanning electron microscopy and X-ray microanalysis. Chichester: John Wiley & Sons Ltd. Search in Google Scholar

[13] Mackey, T. S. (1974). Acid leaching of ilmenite into synthetic rutile. Industrial & Engineering Chemistry Product Research and Development, 13, 9–17. DOI: 10.1021/i360049a003. http://dx.doi.org/10.1021/i360049a003Search in Google Scholar

[14] Marczenko, Z. (1979). Spectrofotometryczne oznaczanie pierwiastkow (Spectrophotometric determination of elements). Warsaw: PWN. Search in Google Scholar

[15] Mecklenburg, W. (1930). U.S. Patent No. 1,758,528. Washington, D.C.: U.S. Patent Office. Search in Google Scholar

[16] Perera, S., Zelenski, N., & Gillan, G. (2006). Synthesis of nanocrystalline TiO2 and reduced titanium oxides via rapid and exothermic metathesis reactions. Chemistry of Materials, 18, 2381–2388. DOI: 10.121/cm0528328. http://dx.doi.org/10.1021/cm0528328Search in Google Scholar

[17] Przepiera, A., & Sosnowski, J. (1998). Możliwości udoskonalenia siarczanowej technologii produkcji ditlenku tytanu. Przemysł Chemiczny, 77, 328–334. Search in Google Scholar

[18] Skudlarski, K. (1974). Technologia produkcji tytanu i dwutlenku tytanu. Wrocław: Politechnika Wrocławska. Search in Google Scholar

[19] Ullmann’s Encyclopedia of Industrial Chemistry. (2002). Weinheim: Wiley-VCH Verlag GmbH. Search in Google Scholar

[20] Wiederhöft, G., Bayer, E., Müller, W. D., & Lailach, G. (1991). U.S. Patent No. 4,988,495. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

Published Online: 2008-2-1
Published in Print: 2008-2-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences