Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 21, 2011

Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal

  • Gaël Zamora EMAIL logo , Laurent Arurault , Peter Winterton and René Bes
From the journal Chemical Papers


Porous anodic films containing nickel were prepared by AC electro-deposition. The porosity of the films was controlled by using different working conditions (anodisation electrolyte, voltage, and time). Then nickel was electro-deposited using an alternating voltage. The impact of the anodic film on the current density waveforms and the metal content can largely be explained by the porosity differences, while changing the deposition time caused changes due to over-oxidation of the aluminium substrate, experimentally proved by TEM. Finally, the impact of deposition time on the deposited metal was successfully fitted using an Elovich type law over a large time-span (up to 1800 s), showing the ability to achieve precise control of the metal content.

[1] Anderson, Å., Hunderi, O., & Granqvist, C. G. (1980). Nickel pigmented anodic aluminium oxide for selective absorption of solar energy. Journal of Applied Physics, 51, 754–764. DOI: 10.1063/1.327337. in Google Scholar

[2] Arurault, L., & Bes, R. S. (2007). Formulation de nouveaux bains pour la coloration électrolytique. Galvano Organo Traitements de Surface, 767, 40–42. Search in Google Scholar

[3] Arurault, L., & Bes, R. S. (2003). Kinetics of metallic electrochemical impregnation of porous anodic oxidation layer on 1050 and 2024 aluminium alloys. Advanced Engineering Materials, 5, 433–435. DOI: 10.1002/adem.200300252. in Google Scholar

[4] Arurault, L., Salmi, J., & Bes, R. S. (2004). Comparison of AC voltage and periodic-reverse current nickel pigmented anodized aluminium as solar selective absorber. Solar Energy Materials and Solar Cells, 82, 447–455. DOI: 10.1016/j.solmat.2004.02.002. in Google Scholar

[5] Arurault, L., Zamora, G., & Bes, R. S. (2006). Energetic costs of the electrochemical steps during the preparation of aluminium porous anodic layers impregnated by metals. ATB Métallurgie, 45, 306–309. Search in Google Scholar

[6] Arurault, L., Zamora, G., Vilar, V., Winterton, P., & Bes, R. (2010). Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrode-position. Journal of Material Science, 45, 2611–2618. DOI: 10.1007/s10853-010-4235-8. in Google Scholar

[7] Chi, G. J., Yao, S. W., Fan, J., Zhang, W. G., & Wang, H. Z. (2002). Antibacterial activity of anodized aluminium with deposited silver. Surface and Coatings Technology, 157, 162–165. DOI: 10.1016/S0257-8972(02)00150-0. in Google Scholar

[8] Dasquet, J.-P., Bonino, J.-P., Caillard, D., & Bes, R. S. (2000a). Zinc impregnation of the anodic oxidation layer of 1050 and 2024 aluminium alloys. Journal of Applied Electrochemistry, 30, 845–853. DOI: 10.1023/A:1003947800813. in Google Scholar

[9] Dasquet, J.-P., Caillard, D., Conforto, E., Bonino, J.-P., & Bes, R. (2000b). Investigation of the anodic oxide layer on 1050 and 2024T3 aluminium alloys by electron microscopy and electrochemical impedance spectroscopy. Thin Solid Films, 371, 183–190. DOI: 10.1016/S0040-6090(00)01016-6. in Google Scholar

[10] Forrer, P., Schlottig, F., Siegenthaler, H., & Textor, M. (2000). Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. Journal of Applied Electrochemistry, 30, 533–541. DOI: 10.1023/A:1003941129560. in Google Scholar

[11] Fukuda, Y., & Fukushima, T. (1982). Electrodeposition of nickel and zinc into the pores of anodic oxide film on aluminium. Journal of the Metal Finishing Society of Japan, 33, 50–55. Search in Google Scholar

[12] Goueffon, Y., Arurault, L., Fontorbes, S., Mabru, C., Tonon, C., & Guigue, P. (2010). Chemical characteristics, mechanical and thermo-optical properties of black anodic films prepared on 7175 aluminium alloy for space applications. Materials Chemistry and Physics, 120, 636–642. DOI: 10.1016/j.matchemphys.2009.12.016. in Google Scholar

[13] Granqvist, C. G., Andersson, Å., & Hunderi, O. (1979). Spectrally selective surfaces of Ni-pigmented anodic Al2O3. Applied Physics Letters, 35, 268–270. DOI: 10.1063/1.91078. in Google Scholar

[14] Goad, D. G. W., & Moskovits, M. (1978). Colloidal metal in aluminium-oxide. Journal of Applied Physics, 49, 2929–2934. DOI: 10.1063/1.325153. in Google Scholar

[15] Hwang, S.-K., Lee, J., Jeong, S.-H., Lee, P.-S., & Lee, K.-H. (2005). Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodisation. Nanotechnology, 16, 850–858. DOI: 10.1088/0957-4484/16/6/040. in Google Scholar

[16] Jagminas, A., Lichušina, S., Kurtinaitiené, M., & Selskis, A. (2003). Concentration effect of the solutions for alumina template ac filling by metals arrays. Applied Surface Science, 211, 194–202. DOI: 10.1016/S0169-4332(03)00247-2. in Google Scholar

[17] Kallithrakas-Kontos, N., Moshohoritou, R., Ninni, V., & Tsangaraki-Kaplanoglou, I. (1998). Investigation of the relationship between the reflectance and the deposited nickel and tin amount on the aluminium anodic oxide film. Thin Solid Films, 326, 166–170. DOI: 10.1016/S0040-6090(98)00569-0. in Google Scholar

[18] Kawai, S., & Ueda, R. (1975). Magnetic properties of anodic oxide coatings on aluminium containing electrodeposited Co and Co-Ni. Journal of the Electrochemical Society, 122, 32–36. DOI: 10.1149/1.2134152. in Google Scholar

[19] Keller, F., Hunter, M. S., & Robinson, D. L. (1953). Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 100, 411–419. DOI: 10.1149/1.2781142. in Google Scholar

[20] Kyotani, T., Tsai, L.-f., & Tomita, A. (1996). Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminium oxide film. Chemistry of Materials, 8, 2109–2113. DOI: 10.1021/cm960063+. in Google Scholar

[21] Lee, J. H., Lee, D. N., & Kang, I. K. (1978). Alternating current color anodisation of aluminium alloys. Plating and Surface Finishing, 1, 40–44. Search in Google Scholar

[22] McBren, P. H., & Moskovits, M. (1987). A surface-enhaced Raman study of ethylene and oxygen interacting with supported silver catalysts. Journal of Catalysis, 103, 188–199. DOI: 10.1016/0021-9517(87)90105-9. in Google Scholar

[23] Nielsch, K., Müller, F., Li, A.-P., & Gösele, U. (2000). Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Advanced Materials, 12, 582–586. DOI: 10.1002/(SICI)1521-4095(200004)12:8-582.<582::AID-ADMA582>3.0.CO;2-310.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3Search in Google Scholar

[24] Papadopoulos, C., Chang, B. H., Yin, A. J., & Xu, J. M. (2002). Engineering carbon nanotube via template growth. International Journal of Nanoscience, 1, 205–212. DOI: 10.1142/S0219581X02000188. in Google Scholar

[25] Preston, C. K., & Moskovits, M. (1993). Optical characterization of anodic aluminium oxide films containing electrochemically deposited metal particles. 1. Gold in phosphoric acid anodic aluminium oxide films. The Journal of Physical Chemistry, 97, 8495–8503. DOI: 10.1021/j100134a019. in Google Scholar

[26] Safrany, J. S. (2008). Anodisation de l’aluminium et de ses alliages. Techniques de l’Ingénieur, 6(COR 12), M1630v2/1-M1630v2/27. 10.51257/a-v3-m1630Search in Google Scholar

[27] Salmi, J., Bonino, J.-P., & Bes, R. S. (2000). Nickel pigmented anodized aluminium as solar selective absorbers. Journal of Materials Science, 35, 1347–1351. DOI: 10.1023/A:10047738 21962. in Google Scholar

[28] Sauer, G., Brehm, G., Schneider, S., Nielsch, K., Wehrspohn, R. B., Choi, J., Hofmeister, H., & Gösele, U. (2002). Highly ordered monocrystalline silver nanowire arrays. Journal of Applied Physics, 91, 3243–3247. DOI: 10.1063/1.1435830. in Google Scholar

[29] Shaffei, M. F., Abd El-Rehim, S. S., Shaaban, N. A., & Huisen, H. S. (2001). Electrolytic coloring of anodic aluminum for selective solar absorbing films: use of additives promoting color depth and rate. Renewable Energy, 23, 489–495. DOI: 10.1016/S0960-1481(00)00129-4. in Google Scholar

[30] Szkutnik, P. D., Maximovitch, S., Chainet, E., Dalard, F., Saulig, K., Dijon, J., & Pantigny, P. (2006). Aluminium anodisation process including oxide barrier removal for nanotechnological applications. ATB Métallurgie, 45, 116–119. Search in Google Scholar

[31] Trompette, J. L., Arurault, L., Fontorbes, S., & Massot, L. (2010). Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates. Electrochimica Acta, 55, 2901–2910. DOI: 10.1016/j.electacta.2009.12. 063. in Google Scholar

[32] Van der Linden, B., Terryn, H., & Vereecken, J. (1990). Investigation of anodic aluminium oxide layers by electrochemical impedance spectroscopy. Journal of Applied Electrochemistry, 20, 798–803. DOI: 10.1007/BF01094309. in Google Scholar

[33] Wang, Z., Su, Y.-K., & Li, H.-L. (2002). AFM study of gold nanowire array electrodeposited within anodic aluminium oxide template. Applied Physics A: Materials Science & Processing, 74, 563–565. DOI: 10.1007/s003390100909. in Google Scholar

[34] Wernick, S., Pinner, R., & Sheasby, P. G. (1987). The surface treatment and finishing of aluminum and its alloys (5th ed.). Teddington, England: ASM International. Search in Google Scholar

[35] Wu, H.-Y., Zhao, Y., & Jiao, Q.-Z. (2009). Nanotube arrays of Zn/Co/Fe composite oxides assembled in porous anodic alumina and their magnetic properties. Journal of Alloys Compounds, 487, 591–594. DOI: 10.1016/j.jallcom.2009.08.018. in Google Scholar

[36] Yang, S., Zhu, H., Yu, D., Jin, Z., Tang, S., & Du, Y. (2000). Preparation and magnetic property of Fe nanowire array, Journal of Magnetism and Magnetic Materials, 222, 97–100. DOI: 10.1016/S0304-8853(00)00541-2. in Google Scholar

[37] Yin, A. J., Li, J., Jian, W., Bennett, A. J., & Xu, J. M. (2001). Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Applied Physics Letters, 79, 1039–1041. DOI: 10.1063/1.1389765. in Google Scholar

[38] Yoo, W.-C., & Lee, J.-K. (2004). Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes. Advanced Materials, 16, 1097–1101. DOI: 10.1002/adma.200306595. in Google Scholar

[39] Zamora, G., Arurault, L., & Bes, R. S. (2004). Aspectos energéticos y caracteristicas: De las capas anódicas porosas elaboradas en aleaciones de aluminio 1050A. Pinturas y Acabados Industriales, 46(290), 36–40. Search in Google Scholar

[40] Zemanová, M., Chovancová, M., Blaho, P., Ušák, E., & Valtýni, J. (2008a). Effect of plating mode and complexing agent on morphology of pigmented anodic alumina coatings. Transactions of the Institute of Metal Finishing, 86, 109–114. DOI: 10.1179/174591908X272933. in Google Scholar

[41] Zemanová, M., Chovancová, M., Gáliková, Z., & Krivošík, P. (2008b). Nickel electrolytic colouring of anodic alumina for selective solar absorbing films. Renewable Energy, 33, 2303–2310. DOI: 10.1016/j.renene.2008.01.005. in Google Scholar

[42] Zemanová, M., Chovancová, M., & Krivošík, P. (2009a). A new approach to nickel electrolytic colouring of anodised aluminium. Chemical Papers, 63, 62–70. DOI:10.2478/s11696-008-0081-4. in Google Scholar

[43] Zemanová, M., Gál, M., & Chovancová, M. (2009b). Effect of frequency on pulse electrolytic colouring process of anodised aluminium. Transactions of the Institute of Metal Finishing, 87, 97–101. DOI: 10.1179/174591909X424186. in Google Scholar

Published Online: 2011-5-21
Published in Print: 2011-8-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 6.12.2023 from
Scroll to top button