Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 16, 2011

Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature

  • S. Ozturkcan EMAIL logo , Kadir Turhan and Zuhal Turgut
From the journal Chemical Papers


An innovative, powerful, efficient and relatively rapid method was developed to synthesise various β-aminoketone derivatives from cyclohexanone, substituted aromatic amines and aromatic or hetero-aromatic aldehydes via ultrasound-assisted direct-type catalytic Mannich reaction using bismuth(III) triflate in water. Good yields of the desired β-aminoketones were obtained at room temperature by ultrasound-assisted reaction within 1–2 h. The major advantages of the proposed method are undemanding conditions, easy operation, low toxicity, shorter reaction time, anti selectivity and higher yields in comparison with conventional methods.

[1] Ando, T., Kimura, T., Fujita, M., Levęque, J. M., & Luche, J. L. (2001). Scavenging of the radical species formed in the sonochemical excitation of styrenes. Tetrahedron Letters, 42, 6865–6867. DOI: 10.1016/S0040-4039(01)01395-8. in Google Scholar

[2] Bhadra, S., Saha, A., & Ranu, B. C. (2008). One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates. Green Chemistry, 10, 1224–1230. DOI: 10.1039/B809200A. in Google Scholar

[3] Cabello, N., Cintas, P., & Luche, J. L. (2003). Sonochemical effects in the additions of furan to masked orthobenzoquinones. Ultrasonics Sonochemistry, 10, 25–31. DOI: 10.1016/S1350-4177(02)00103-7. in Google Scholar

[4] Chen, W. Y., & Li, X. S. (2009). The solvent-free vinylogous Mannich reaction of dicyanoalkylidenes with α-amido sulfones under ultrasound irradiation. Catalysis Communications, 10, 549–551. DOI: 10.1016/j.catcom.2008.10.031. in Google Scholar

[5] Dubs, C., Hamashima, Y., Sasamoto, N., Seidel, T. M., Suzuki, S., Hashizume, D., & Sodeoka, M. (2008). Mechanistic studies on the catalytic asymmetric Mannich-type reaction with dihydroisoquinolines and development of oxidative Mannich-type reactions starting from tetrahydroisoquinolines. The Journal of Organic Chemistry, 73, 5859–5871. DOI: 10.1021/jo800800y. in Google Scholar PubMed

[6] Eftekhari-Sis, B., Abdollahifar, A., Hashemi, M. M., & Zirak, M. (2006). Stereoselective synthesis of β-amino ketones via directMannich-type reactions, catalyzed with ZrOCl2 · 8H2O under solvent-free conditions. European Journal of Organic Chemistry, 2006, 5152–5157. DOI: 10.1002/ejoc.200600493. in Google Scholar

[7] Hong, D., Yang, Y. Y., Wang, Y. G., & Lin, X. F. (2009). A Yb(OTf)3/PEG-supported quaternary ammonium salt catalyst system for a three-component Mannich-type reaction in aqueous media. Synlett, 2009, 1107–1110. DOI: 10.1055/s-0028-1088221. in Google Scholar

[8] Hota, S. K., Chatterjee, A., Bhattacharya, P. K., & Chattopadhyay, P. (2009). A green chemical approach for the Nalkylation of aldoximes to form nitrones in organized aqueous media and their in situ cycloaddition with olefins. Green Chemistry, 11, 169–176. DOI: 10.1039/B812290C. in Google Scholar

[9] Josephsohn, N. S., Carswell, E. L., Snapper, M. L., & Hoveyda, A. H. (2005). Practical and highly enantioselective synthesis of β-alkynyl-β-amino esters through Agcatalyzed asymmetric Mannich reactions of silylketene acetals and alkynyl imines. Organic Letters, 7, 2711–2713. DOI: 10.1021/ol050910r. in Google Scholar PubMed PubMed Central

[10] Kantam, M. L., Rajasekhar C. V., Gopikrishna, G., Reddy, K. R., & Choudary, B. M. (2006). Proline catalyzed two-component, three-component and self-asymmetric Mannich reactions promoted by ultrasonic conditions. Tetrahedron Letters, 47, 5965–5967. DOI: 10.1016/j.tetlet.2006.06.042. in Google Scholar

[11] Kobayashi, S., Araki, M., & Yasuda, M. (1995). One-pot synthesis of β-amino esters from aldehydes using lanthanide triflate as a catalyst. Tetrahedron Letters, 36, 5773–5776. DOI: 10.1016/0040-4039(95)01096-Z. 10.1016/0040-4039(95)01096-ZSearch in Google Scholar

[12] Kobayashi, S., Busujima, T., & Nagayama, S. (1999b). Ln(OTf)3- or Cu(OTf)2-catalyzed Mannich-type reactions of aldehydes, amines, and silyl enolates in micellar systems. Facile synthesis of β-amino ketones and esters in water. Synlett, 1999, 545–546. DOI: 10.1055/s-1999-2693. 10.1055/s-1999-2693Search in Google Scholar

[13] Kobayashi, S., Hamada, T., & Manabe, K. (2002). The catalytic asymmetric Mannich-type reactions in aqueous media. Journal of the American Chemical Society, 124, 5640–5641. DOI: 10.1021/ja026094p. in Google Scholar

[14] Kobayashi, S., & Ishitani, H. (1999a). Catalytic enantioselective addition to imines. Chemical Reviews, 99, 1069–1094. DOI: 10.1021/cr980414z. in Google Scholar

[15] Kobayashi, S., Moriwaki, M., Akiyama, R., Suzuki, S., & Hachiya, I. (1996). Parallel synthesis using Mannich-type three-component reactions and “field synthesis” for the construction of an amino alcohol library. Tetrahedron Letters, 37, 7783–7786. DOI: 10.1016/0040-4039(96)01777-7. in Google Scholar

[16] Kumar, V., Sharma, A., Sharma, M., Sharma, U. K., & Sinha, A. K. (2007). DDQ catalyzed benzylic acetoxylation of arylalkanes: a case of exquisitely controlled oxidation under sonochemical activation. Tetrahedron, 63, 9718–9723. DOI: 10.1016/j.tet.2007.07.018. in Google Scholar

[17] Kureshy, R. I., Agrawal, S., Saravanan, S., Khan, N. H., Shah, A. P, Abdi, S. H. R., Bajaj, H. C., & Suresh, E. (2010). Direct Mannich reaction mediated by Fe(Cp)2PF6 under solvent-free conditions. Tetrahedron Letters, 51, 489–494. DOI: 10.1016/j.tetlet.2009.11.022. in Google Scholar

[18] Li, C. J., & Chan, T. H. (2007). Compherensive organic reactions in aqueous media (2nd ed.). Hoboken, NJ, USA: Wiley. in Google Scholar

[19] List, B., Pojarliev, P., Biller, W. T., & Martin, H. J. (2002). The proline-catalyzed direct asymmetric three-component Mannich reaction: scope, optimization, and application to the highly enantioselective synthesis of 1,2-amino alcohols. Journal of the American Chemical Society, 124, 827–833. DOI: 10.1021/ja0174231. in Google Scholar PubMed

[20] Liu, Y. Q., Li, L. H., Yang, L., & Li, H. Y. (2010). A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins. Chemical Papers, 64, 533–536. DOI: 10.2478/s11696-010-0020-z. in Google Scholar

[21] Luche, J. L. (1997). A few questions on the sonochemistry of solutions. Ultrasonics Sonochemistry, 4, 211–215. DOI: 10.1016/S1350-4177(97)00008-4. in Google Scholar

[22] Manabe, K., Mori, Y., & Kobayashi, S. (2001). Three-component carbon-carbon bond-forming reactions catalyzed by a Brønsted acid-surfactant-combined catalyst in water. Tetrahedron, 57, 2537–2544. DOI: 10.1016/S0040-4020(01)00081-3. in Google Scholar

[23] Mečiarovč, M., Poláčková V., & Toma, Š. (2002). The effect of microwave and ultrasonic irradiation on the reactivity of benzaldehydes under Al2O3, Ba(OH)2, and K2CO3 catalysis. Chemical Papers, 56, 208–213. Search in Google Scholar

[24] Mečiarová M., Toma, Š., & Babiak, P. (2004). Effect of ultrasound on one-pot conversion of alcohols to nitro and azido compounds. Chemical Papers, 58, 104–108. Search in Google Scholar

[25] Meciarova, M., Toma, S., & Luche, J. L. (2001). The sonochemical arylation of malonic esters mediated by manganese triacetate. Ultrasonics Sonochemistry, 8, 119–122. DOI: 10.1016/S1350-4177(00)00029-8. in Google Scholar

[26] Mhaske, S. B., & Argade, N. P. (2006). The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron, 62, 9787–9826. DOI: 10.1016/j.tet.2006.07.098. in Google Scholar

[27] Noei, J., & Khosropour, A. R. (2009). Ultrasound-promoted a green protocol for the synthesis of 2,4-diarylthiazoles under ambient temperature in [bmim]BF4. Ultrasonics Sonochemistry, 16, 711–717. DOI: 10.1016/j.ultsonch.2009.04.001. in Google Scholar PubMed

[28] Ollevier, T., Desyroy, V., & Nadeau, E. (2007). Recent advances in bismuth mediated aldol and Mannich reactions. ARKIVOC, 2007(x), 10–20. Search in Google Scholar

[29] Ollevier, T., & Nadeau, E. (2004). Bismuth triflate-catalyzed three-component Mannich-type reaction. The Journal of Organic Chemistry, 69, 9292–9295. DOI: 10.1021/jo048617c. in Google Scholar PubMed

[30] Ollevier, T., & Nadeau, E. (2007). An efficient and mild bismuth triflate-catalyzed three-component Mannich-type reaction. Organic & Biomolecular Chemistry, 5, 3126–3134. DOI: 10.1039/b710794c. in Google Scholar PubMed

[31] Ollevier, T., Nadeau, E., & Eguillon, J. C. (2006a). The first catalytic Mannich-type reaction of N-alkoxycarbonylamino sulfones with silyl enolates. Advanced Synthesis & Catalysis, 348, 2080–2084. DOI: 10.1002/adsc.200606222. in Google Scholar

[32] Ollevier, T., Nadeau, E., & Guay-Bégin, A. A. (2006b). Direct-type catalytic three-component Mannich reaction in aqueous media. Tetrahedron Letters, 47, 8351–8354. DOI: 10.1016/j.tetlet.2006.09.082. in Google Scholar

[33] Sinha, A. K., Sharma, A., & Joshi, B. P. (2007). One-pot twostep synthesis of 4-vinylphenols from 4-hydroxy substituted benzaldehydes under microwave irradiation: a new perspective on the classical Knoevenagel-Doebner reaction. Tetrahedron, 63, 960–965. DOI: 10.1016/j.tet.2006.11.023. in Google Scholar

[34] Tabatabaeian, K., Mamaghani, M., Mahmoodi, N. O., & Khorshidi, A. (2008). Ultrasonic-assisted ruthenium-catalyzed oxidation of aromatic and heteroaromatic compounds. Catalysis Communications, 9, 416–420. DOI: 10.1016/j.catcom.2007.07.024. in Google Scholar

[35] Trost, B. M., & Terrell, L. R. (2003). A direct catalytic asymmetric Mannich-type reaction to syn-amino alcohols. Journal of the American Chemical Society, 125, 338–339. DOI: 10.1021/ja028782e. in Google Scholar

[36] Ueno, M., & Kobayashi, S. (2005). Catalytic enantioselective Mannich reactions. In E. Juaristi, & V. Soloshonok (Eds.), Enantioselective synthesis of β-amino acids (2nd ed., pp. 139–158). Hoboken, NJ, USA: Wiley. in Google Scholar

[37] Vinatoru, M., Bartha, E., Badea, F., & Luche, J. L. (1998). Sonochemical and thermal redox reactions of triphenylmethane and triphenylmethyl carbinol in nitrobenzene. Ultrasonics Sonochemistry, 5, 27–31. DOI: 10.1016/S1350-4177(98)00004-2. in Google Scholar

[38] Wei, H. L., Yan, Z. Y., Niu, Y. N., Li, G. Q., & Liang, Y. M. (2007). New light on an old story: facile and efficient synthesis of 1,3-diaryl-5-spirohexahydropyridimines via a six-molecule, three-component Mannich-type reaction. The Journal of Organic Chemistry, 72, 8600–8603. DOI: 10.1021/jo7016235. in Google Scholar PubMed

[39] Wu, Y. S., Cai, J., Hu, Z. Y., & Lin, G. X. (2004). A new class of metal-free catalysts for direct diastereo- and regioselective Mannich reactions in aqueous media. Tetrahedron Letters, 45, 8949–8952. DOI: 10.1016/j.tetlet.2004.09.174. in Google Scholar

[40] Xia, M., & Lu, Y. D. (2007). Ultrasound-assisted one-pot approach to α-amino phosphonates under solvent-free and catalyst-free conditions. Ultrasonics Sonochemistry, 14, 235–240. DOI: 10.1016/j.ultsonch.2006.04.006. in Google Scholar PubMed

[41] Xu, H., Liao, W. M., & Li, H. F. (2007). A mild and efficient ultrasound-assisted synthesis of diaryl ethers without any catalyst. Ultrasonics Sonochemistry, 14, 779–782. DOI: 10.1016/j.ultsonch.2007.01.002. in Google Scholar PubMed

Published Online: 2011-11-16
Published in Print: 2012-1-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 8.6.2023 from
Scroll to top button