Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 30, 2012

Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads

Steva Levic, Verica Djordjevic, Nevenka Rajic, Milan Milivojevic, Branko Bugarski and Viktor Nedovic
From the journal Chemical Papers


Electrostatic extrusion was applied to the encapsulation of 3-ethoxy-4-hydroxybenzaldehyde (ethyl vanillin) in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. The calcium alginate/poly(vinyl alcohol) hydrogel spheres were formed after contact with the cross-linker solution of calcium chloride, followed by the freeze-thaw method for poly(vinyl alcohol) gel formation. The entrapment of aroma in beads was investigated by FTIR and thermal analysis (thermogravimetry/differential thermal gravimetry; TGA/DTG). The mass loss in the temperature range of 150–300°C is related to degradation of the matrix and the release of ethyl vanillin. According to the DTG curve, the release of ethyl vanillin occurs at about 260°C. TGA measurements of the stored samples confirmed that formulations were stable for a period of one month. FTIR analysis provides no evidence for chemical interactions between flavour and alginate that would alter the nature of the functional groups in the flavour compound.

[1] Bezbradica, D., Matic, G., Obradovic, B., Nedovic, V., Leskosek-Cukalovic, I., & Bugarski, B. (2004). Immobilization of brewing yeast in PVA/alginate micro beads using electrostatic droplet generation. Hemijska Industrija, 58, 118–120. in Google Scholar

[2] Chan, E. S., Lee, B. B., Ravindra, P., & Poncelet, D. (2009). Prediction models for shape and size of Ca-alginate macrobeads produced through extrusion-dripping method. Journal of Colloid and Interface Science, 338, 63–72. DOI: 10.1016/j.jcis.2009.05.027. in Google Scholar PubMed

[3] Doria-Serrano, M. C., Ruiz-Treviño, F. A., Rios-Arciga, C., Hernández-Esparza, M., & Santiago, P. (2001). Physical characteristics of poly(vinyl alcohol) and calcium alginate hydrogels for immobilization of activated sludge. Biomacromolecules, 2, 568–574. DOI: 10.1021/bm015514k. in Google Scholar PubMed

[4] Gonzáles-Baró, A. C., Parajón-Costa, B. S., Franca, C. A., & Pis-Diez, R. (2008). Theoretical and spectroscopic study of vanillic acid. Journal of Molecular Structure, 889, 204–210. DOI: 10.1016/j.molstruc.2008.01.049. in Google Scholar

[5] Hassan, C. M., & Peppas, N. A. (2000). Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science, 153, 37–65. DOI: 10.1007/3-540-46414-x 2. in Google Scholar

[6] Lai, F., Loy, G., Manconi, M., Manca, L. M., & Fadda, A. M. (2007). Artemisia arborescens l essential oil loaded beads: Preparation and Characterization. AAPS PharmSciTech, 8, E126–E132. DOI: 10.1208/pt0803067. in Google Scholar PubMed PubMed Central

[7] Lange, N. A. (1999). Thermodynamic properties. In J. A. Dean (Ed.), Lange’s Handbook of chemistry (pp. 545–701). New York, NY, USA: McGraw-Hill. Search in Google Scholar

[8] Laurienzo, P., Malinconico, M., Motta, A., & Vicinanza, A. (2005).Synthesis and characterization of a novel alginate-poly(ethylene glycol) graft polymer. Carbohydrate Polymers, 62, 274–282. DOI: 10.1016/j.carbpol.2005.08.005. in Google Scholar

[9] Lee, H. C., Oh, B. D., Bae, S. W., Kim, M. H., Lee, J. Y., & Song, I. S. (2003). Partial nucleate boiling on the microscale heater maintaining constant wall temperature. Journal of Nuclear Science and Technology, 40, 768–774. DOI: 10.1080/18811248.2003.9715418. in Google Scholar

[10] Lyn, M. E., & Ying, D. Y. (2010). Drying model for calcium alginate beads. Industrial & Engineering Chemistry Research, 49, 1986–1990. DOI: 10.1021/ie901451m. in Google Scholar

[11] Manojlovic, V., Rajic, N., Djonlagic, J., Obradovic, B., Nedovic, V., & Bugarski, B. (2008). Application of electrostatic extrusion — flavour encapsulation and controlled release. Sensors, 8, 1488–1496. DOI: 10.3390/s8031488. in Google Scholar PubMed PubMed Central

[12] Mohamad Ibrahim, M. N., Sipaut, C. S., & Mohamad Yusof, N. N. (2009). Purification of vanillin by a molecular imprinting polymer technique. Separation and Purification Technology, 66, 450–456. DOI: 10.1016/j.seppur.2009.02.010. in Google Scholar

[13] Nuttelman, C. R., Mortisen, D. J., Henry, S. M., & Anseth, K. S. (2001). Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. Journal of Biomedical Materials Research, 57, 217–223. DOI: 10.1002/1097-4636(200111)57:2<217::AIDJBM1161>3.0.CO;2-I.<217::AID-JBM1161>3.0.CO;2-I10.1002/1097-4636(200111)57:2<217::AID-JBM1161>3.0.CO;2-ISearch in Google Scholar

[14] Parikh, A., & Madamwar, D. (2006). Partial characterization of extracellular polysaccharides from cyanobacteria. Biore source Technology, 97, 1822–1827. DOI: 10.1016/j.biortech.2005.09.008. in Google Scholar

[15] Perry, J. H. (1950). Chemical engineer’s handbook (4th ed.). New York, NY, USA: McGraw-Hill. Search in Google Scholar

[16] Ricciardi, R., Auriemma, F., Gaillet, C., De Rosa, C., & Lauprêtre, F. (2004). Investigation of the crystallinity of freeze/thaw poly (vinyl alcohol) hydrogels by different techniques. Macromolecules, 37, 9510–9516. DOI: 10.1021/ma048418v. in Google Scholar

[17] Rocha de Oliveira, A. A., Silva Gomide, V., Leite, M. F., Mansur, H. S., & Pereira, M. M. (2009). Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxity of sol-gel derived hybrid foams. Materials Research, 12, 239–244. DOI: 10.1590/s1516-14392009000200021. 10.1590/S1516-14392009000200021Search in Google Scholar

[18] Roczniak, C., Biernacka, T., & Skarżyński, M. (1983). Some properties and chemical structure of phenolic resins and their derivatives. Journal of Applied Polymer Science, 28, 531–542 DOI: 10.1002/app.1983.070280209. in Google Scholar

[19] Singh, B., Sharma, D. K., & Gupta. A. (2009). A study towards release dynamics of thiram fungicide from starch-alginate beads to control environmental and health hazards. Journal of Hazardous Materials, 161, 208–216. DOI: 10.1016/j.jhazmat.2008.03.074. in Google Scholar

[20] Vauchel, P., Leroux, K., Kaas, R., Arhaliass, A., Baron, R., & Legrand, J. (2009). Kinetics modeling of alginate alkaline extraction from Laminaria digitata. Bioresource Technology, 100, 1291–1296. DOI: 10.1016/j.biortech.2008.03.005. in Google Scholar

[21] Vieira, E. F. S., Cestari, A. R., de Santos, E. B., & Rezende, C. X. (2006). Measurement of cation binding to immobilized vanillin by isothermal calorimetry. Journal of Colloid and Interface Science, 298, 74–78. DOI: 10.1016/j.jcis.2005.12.021. in Google Scholar

[22] Zheng, D., Hu, C., Peng, Y., & Hu, S. (2009). A carbon nanotube /polyvanillin composite film as an electrocatalyst for the electrochemical oxidation of nitrite and its application as a nitrite sensor. Electrochimica Acta, 54, 4910–4915. DOI: 10.1016/j.electacta.2009.04.004. in Google Scholar

[23] Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. In N. J. Zuidam, & V. A. Nedovic (Eds.), Encapsulation technologies for food active ingredients and food processing (pp. 3–29). Dordrecht, The Netherlands: Springer. in Google Scholar

Published Online: 2012-11-30
Published in Print: 2013-2-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Scroll Up Arrow