Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 17, 2013

In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols

Denise Endringer, Osmair Oliveira and Fernão Braga
From the journal Chemical Papers


Fifteen carbohydrates (d-mannose, d-glucose, d-galactose, methyl-α-d-glucose, l-rhamnose, d-xylose, d-fructose, d-arabinose, dulcitol, mannitol, β-maltose, α-lactose, melibiose, sucrose, and raffinose) and four cyclitols [l-(+)-bornesitol, myo-inositol, per-O-acetyl-1-l-(+)-bornesitol, and quinic acid] were assayed for in vitro ACE inhibition. Of these molecules, per-O-Acetyl-1-l-(+)-bornesitol, quinic acid, methyl-α-d-glucose, d-rhamnose, raffinose, and the disaccharides were determined to be either inactive or weak ACE inhibitors, whereas l-(+)-bornesitol, d-galactose, d-glucose, and myo-inositol exhibited significant ACE inhibition. Molecular docking studies were performed to investigate interactions between active compounds and human ACE (Protein Data Bank, PDB 1O83). The results of various calculations showed that all active sugars bind to the same enzyme region, which is a tunnel directed towards the active site. With the exception of myo-inositol (K i = 13.95 μM, IC50 = 449.2 μM), the active compounds presented similar K i and IC50 values. d-Galactose (K i = 19.6 μM, IC50 = 35.7 μM) and l-(+)-bornesitol (K i = 25.3 μM, IC50 = 41.4 μM) were the most active compounds, followed by d-glucose (K i = 32.9 μM, IC50 = 85.7 μM). Our docking calculations are in agreement with the experimental data and show a new binding region for sugar-like molecules, which may be explored for the development of new ACE inhibitors.

[1] Akif, M., Georgiadis, D., Mahajan, A., Dive, V., Sturrock, E. D., Isaac, R. E., & Acharya, K. R. (2010). High-resolution crystal structures of Drosophila melanogaster angiotensinconverting enzyme in complex with novel inhibitors and antihypertensive drugs. Journal of Molecular Biology, 400, 502–517. DOI: 10.1016/j.jmb.2010.05.024. in Google Scholar PubMed

[2] Akif, M., Masuyer, G., Schwager, S. L. U., Bhuyan, B. J., Mugesh, G., Isaac, R. E., Sturrock, E. D., & Acharya, K. R. (2011). Structural characterization of angiotensin Iconverting enzyme in complex with a selenium analogue of captopril. The FEBS Journal, 278, 3644–3650. DOI: 10.1111/j.1742-4658.2011.08276.x. in Google Scholar PubMed PubMed Central

[3] Alderman, C. P. (1996). Adverse effects of the angiotensinconverting enzyme inhibitors. The Annals of Pharmacotherapy, 30, 55–61. 10.1177/106002809603000110Search in Google Scholar PubMed

[4] Bakris, G., Sowers, J., Epstein, M., & Williams, M. (2000). Hypertension in patients with diabetes. Why is aggressive treatment essential? Postgraduate Medicine, 107(2), 53–64. DOI: 10.3810/pgm.2000.02.884. in Google Scholar PubMed

[5] Bautista-Ibáñez, L., Ramírez-Gualito, K., Quiroz-García, B., Rojas-Aguilar, A., & Cuevas, G. (2008). Calorimetric measurement of the CH/π interaction involved in the molecular recognition of saccharides by aromatic compounds. The Journal of Organic Chemistry, 73, 849–857. DOI: 10.1021/jo701926r. in Google Scholar PubMed

[6] Brown, B., & Hall, A. S. (2005). Renin-angiotensin system modulation: The weight of evidence. American Journal of Hypertension, 18(Supplement), 127–133. DOI: 10.1016/j.amjhyper.2005.06.002. in Google Scholar PubMed

[7] Chen, S. J., Chang, C. T., Chung, Y. C., & Chou, S. T. (2007). Studies on the inhibitory effect of Graptopetalum paraguayense E. Walther extracts on the angiotensin converting enzyme. Food Chemistry, 100, 1032–1036. DOI: 10.1016/j.foodchem.2005.10.053. in Google Scholar

[8] Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Jr., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179–5197. DOI: 10.1021/ja00124a002. in Google Scholar

[9] Cushman, D. W., Cheung, H. S., Sabo, E. F., & Ondetti, M. A. (1977). Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry, 16, 5484–5491. DOI: 10.1021/bi00644a014. in Google Scholar PubMed

[10] Endringer, D. C., Pezzuto, J. M., Soares, C. M., & Braga, F. C. (2007). l-(+)-Bornesitol. Acta Crystallographica Section E, E63, o1067–o1068. DOI: 10.1107/s1600536806037019. in Google Scholar PubMed PubMed Central

[11] Endringer, D. C., Pezzuto, J. M., & Braga, F. C. (2009). NF-κB inhibitory activity of cyclitols isolated from Hancornia speciosa. Phytomedicine, 16, 1064–1069. DOI: 10.1016/j.phymed.2009.03.022. in Google Scholar PubMed

[12] Ferreira, S. H., & Rocha e Silva, M. (1965). Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia, 21, 347–349. DOI: 10.1007/bf02144709. in Google Scholar PubMed

[13] Ferreres, F., Sousa, C., Valentão, P., Seabra, R. M., Pereira, J. A., & Andrade, P. B. (2007). Tronchuda cabbage (Brassica oleracea L. var. costata DC) seeds: Phytochemical characterization and antioxidant potential. Food Chemistry, 101, 549–558. DOI: 10.1016/j.foodchem.2006.02.013. in Google Scholar

[14] Fleming, I. (2006). Signaling by the angiotensin-converting enzyme. Circulation Research, 98, 887–896. DOI: 10.1161/01.res.0000217340.40936.53. in Google Scholar PubMed

[15] Hagiwara, S. Y., Takahashi, M., Shen, Y., Kaihou, S., Tomiyama, T., Yazawa, M., Tamai, Y., Sin, Y., Kazusaka, A., & Terazawa, M. (2005). A phytochemical in the edible Tamogitake mushroom (Pleuroutus cornucopie), d-manitol, inhibits ACE activity and lowers the blood pressure of spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry, 69, 1603–1605. DOI: 10.1271/bbb.69.1603. in Google Scholar PubMed

[16] Hooper, N. M., & Turner, A. J. (2003). An ACE structure. Nature Structural & Molecular Biology, 10, 155–157. DOI: 10.1038/nsb0303-155. in Google Scholar PubMed

[17] Hou, W. C., Chen, H. J., & Lin, Y. H. (2003). Antioxidant peptides with angiotensin converting enzyme inhibitory activities and applications for angiotensin converting enzyme purification. Journal of Agricultural and Food Chemistry, 51, 1706–1709. DOI: 10.1021/jf0260242. in Google Scholar PubMed

[18] Je, J. Y., Park, P. J., Kwon, J. Y., & Kim, S. K. (2004). A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Journal of Agricultural and Food Chemistry, 52, 7842–7845. DOI: 10.1021/jf0494027. in Google Scholar PubMed

[19] Koike, H., Ito, K., Miyamoto, M., & Nishino, H. (1980). Effects of long-term blockade of angiotensin converting enzyme with captopril (SQ14,225) on hemodynamics and circulating blood volume in SHR. Hypertension, 2, 299–303. DOI: 10.1161/01.hyp.2.3.299. in Google Scholar

[20] Li, G. H., Liu, H., Shi, Y. H., & Le, G. W. (2005). Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. Journal of Pharmaceutical and Biomedical Analysis, 37, 219–224. DOI: 10.1016/j.jpba.2004.11.004. in Google Scholar PubMed

[21] Lohith, K., Vijayakumar, G. R., Somashekar, B. R., Sivakumar, R., & Divakar, S. (2006). Glycosides and amino acyl esters of carbohydrates as potent inhibitors of angiotensin converting enzyme. European Journal of Medicinal Chemistry, 41, 1059–1072. DOI: 10.1016/j.ejmech.2006.04.005. in Google Scholar

[22] Ma, M. S., Bae, I. Y., Lee, H. G., & Yang, C. B. (2006). Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Fagopyrum esculentum Moench). Food Chemistry, 96, 36–42. DOI: 10.1016/j.foodchem.2005.01.052. in Google Scholar

[23] Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M. Đ., Novaković, S. B., Kaluđerović, G. N., & Kozłowski, H. (2006). Interesting coordination abilities of antiulcer drug famotidine and antimicrobial activity of drug and its cobalt(III) complex. Journal of Inorganic Biochemistry, 100, 1568–1574. DOI: 10.1016/j.jinorgbio.2006.05.009. in Google Scholar

[24] Morris, G. M., Goodesell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662. DOI: 10.1002/(SICI)1096-987X(19981115)19:14〈1639::AID-JCC10〉3.0.CO;2-B.<1639::AID-JCC10>3.0.CO;2-B10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BSearch in Google Scholar

[25] Rapaport, D. C. (1996). The art of molecular dynamics simulation. New York, NY, USA: Cambridge University Press. Search in Google Scholar

[26] Sardinha, J., Guieu, S., Deleuze, A., Fernández-Alonso, M. C., Rauter, A. P., Sinaÿ, P., Marrot, J., Jiménez-Barbero, J., & Sollogoub, M. (2007). gem-Difluoro-carbasugars, the cases of mannopyranose and galactopyranose. Carbohydrate Research, 342, 1689–1703. DOI: 10.1016/j.carres.2007.05.021. in Google Scholar

[27] Schames, J. R., Henchman, R. H., Siegel, J. S., Sotriffer, C. A., Ni, H. H., & McCammon, J. A. (2004). Discovery of a novel binding trench in HIV integrase. Journal of Medicinal Chemistry, 47, 1879–1881. DOI: 10.1021/jm0341913. in Google Scholar

[28] Serra, C. P., Cortes, S. F., Lombardi, J. A., Braga de Oliveira, A., & Braga, F. C. (2005). Validation of a colorimetric assay for the in vitro screening of inhibitors of angiotensin-converting enzyme (ACE) from plant extracts. Phytomedicine, 12, 424–432. DOI: 10.1016/j.phymed.2004. 07.002. in Google Scholar

[29] Silva, G. C., Braga, F. C., Lima, M. P., Pesquero, J. L., Lemos, V. S., & Cortes, S. F. (2011). Hancornia speciosa Gomes induces hypotensive effect through inhibition of ACE and increase on NO. Journal of Ethnopharmacology, 137, 709–713. DOI: 10.1016/j.jep.2011.06.031. in Google Scholar

[30] Sowers, J. R., & Epstein, M. (1995). Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update. Hypertension, 26, 869–879. DOI: 10.1161/01.hyp.26.6.869. in Google Scholar

[31] Sturrock, E. D., Natesh, R., van Rooyen, J. M., & Acharya, K. R. (2004). What’s new in the renin-angiotensin system? Cellular and Molecular Life Sciences, 61, 2677–2686. DOI: 10.1007/s00018-004-4239-0. in Google Scholar

[32] Vermeirssen, V., Van Camp, J., & Verstraete, W. (2002). Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. Journal of Biochemical and Biophysical Methods, 51, 75–87. DOI: 10.1016/s0165-022x(02)00006-4. in Google Scholar

[33] Watermeyer, J. M., Sewell, B. T., Schwager, S. L., Natesh, R., Corradi, H. R., Acharya, K. R., & Sturrock, E. D. (2006). Structure of testis ACE glycosylation mutants and evidence for conserved domain movement. Biochemistry, 45, 12654–12663. DOI: 10.1021/bi061146z. in Google Scholar PubMed PubMed Central

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences