Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 17, 2013

5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis

Katarína Kráľová, František Šeršeň, Matúš Peško, Karel Waisser and Lenka Kubicová
From the journal Chemical Papers

Abstract

5-Bromo-(Br-PBA) and 3,5-dibromo-2-hydroxy-N-phenylbenzamides (Br2-PBA) inhibited photosynthetic electron transport (PET) and their inhibitory efficiency depended on the compound lipophilicity as well as on the electronic properties of the R substituent in the N-phenyl moiety. Br-PBA showed higher PET inhibiting activity than Br2-PBA with the same R substituent. The most effective inhibitors in the tested series were the derivatives with R = 3-F (Br-PBA; IC50 = 4.3 μmol dm−3) and R = 3-Cl (Br2-PBA; IC50 = 8.6 μmol dm−3). Bilinear dependence of the PET inhibiting activity on the lipophilicity of the compounds as well as on the Hammett constant, σ, of the R substituent was observed for both investigated series. Using EPR spectroscopy it was found that the site of action of the tested compounds in the photosynthetic apparatus is situated on the donor side of PS 2, in D· or in the Z·/D· intermediates. Interaction of the studied compounds with chlorophyll a and aromatic amino acids present in the pigment-protein complexes mainly in photosystem 2 was documented by fluorescence spectroscopy.

[1] Ananieva, E. A., Christov, K. N., & Popova, L. P. (2004). Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. Journal of Plant Physiology, 161, 319–328. DOI: 10.1078/0176-1617-01022. http://dx.doi.org/10.1078/0176-1617-0102210.1078/0176-1617-01022Search in Google Scholar

[2] Atal, N., Saradhi, P. P., & Mohanty, P. (1991). Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: Analysis of electron transport activities and changes in fluorescence yields. Plant Cell Physiology, 32, 943–951. 10.1093/oxfordjournals.pcp.a078181Search in Google Scholar

[3] Doležal, M., Kráľová, K., Šeršeň, F., & Miletín, M. (2001). The site of action of some anilides of pyrazine-2-carboxylic acids in the photosynthetic apparatus. Folia Pharmaceutica Universitatis Carolinae, 26, 13–20. Search in Google Scholar

[4] Hayat, Q., Hyat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25. DOI: 10.1016/j.envexpbot.2009.08.005. http://dx.doi.org/10.1016/j.envexpbot.2009.08.00510.1016/j.envexpbot.2009.08.005Search in Google Scholar

[5] Hoff, A. J. (1979). Applications of ESR in photosynthesis. Physics Reports, 54, 75–200. DOI: 10.1016/0370-1573(79)90016-4. http://dx.doi.org/10.1016/0370-1573(79)90016-410.1016/0370-1573(79)90016-4Search in Google Scholar

[6] Janda, T., Szalai, G., Tari, I., & Páldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180. DOI: 10.1007/s004250050547. http://dx.doi.org/10.1007/s00425005054710.1007/s004250050547Search in Google Scholar

[7] Kráľová, K., Šeršeň, F., & Sidóová, E. (1992). Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chemical Papers, 46, 348–350. Search in Google Scholar

[8] Kráľová, K., Šeršeň, F., Miletín, M., & Hartl, J. (1998). Inhibition of photosynthetic electron transport by some anilides of 2-alkylpyridine-4-carboxylic acids in spinach chloroplasts. Chemical Papers, 52, 52–55. Search in Google Scholar

[9] Kráľová, K., Šeršeň, F., Kubicová, L., & Waisser, K. (1999). Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chemical Papers, 53, 328–331. Search in Google Scholar

[10] Kráľová, K., Miletín, M., & Doležal, M. (2001). Inhibition of oxygen evolution rate in freshwater algae Chlorella vulgaris by some anilides of substituted pyridine-4-carboxylic acids. Chemical Papers, 55, 251–253. Search in Google Scholar

[11] Kráľová, K., Šeršeň, F., Klimešová, V., & Waisser, K., (2001). 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris. Chemical Papers, 65, 909–912. DOI: 10.2478/s11696-011-0082-6. http://dx.doi.org/10.2478/s11696-011-0082-610.2478/s11696-011-0082-6Search in Google Scholar

[12] Kráľová, K., Šeršeň, F., Peško, M., Klimešová, V., & Waisser, K. (2012). Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts. Chemical Papers, 66, 795–799. DOI: 10.2478/s11696-012-0192-9. http://dx.doi.org/10.2478/s11696-012-0192-910.2478/s11696-012-0192-9Search in Google Scholar

[13] Kubicová, L., & Waisser, K. (1992). Biological activity of salicylanilides. Československe, 41, 208–216. (in Czech) Search in Google Scholar

[14] Kubicová, L., Kráľová, K., Šeršeň, F., Gregor, J., & Waisser, K. (2000a). Effects of substituted salicylanilides on the photosynthetic apparatus in spinach chloroplasts. Folia Pharmaceutica Universitatis Carolinae, 25, 89–96. Search in Google Scholar

[15] Kubicová, L., Kissová, K., & Waisser, K. (2000b). Inhibition of the chlorophyll production in Chlorella vulgaris by substituted salicylanilides. Folia Pharmaceutica Universitatis Carolinae, 25, 67–72. Search in Google Scholar

[16] Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168, 807–815. DOI: 10.1016/j.jplph.2010.11.001. http://dx.doi.org/10.1016/j.jplph.2010.11.00110.1016/j.jplph.2010.11.001Search in Google Scholar PubMed

[17] Norrington, F. E., Hyde, R. M., Williams, S. G., & Wotton, R. (1975). Physiochemical-activity relations in practice. 1. A rational and self-consistent data bank. Journal of Medicinal Chemistry, 18, 604–607. DOI: 10.1021/jm00240a016. http://dx.doi.org/10.1021/jm00240a01610.1021/jm00240a016Search in Google Scholar PubMed

[18] Otevřel, J., Mandelová, Z., Peško, M., Guo, J., Kráľová, K., Šeršeň, F., Vejsová, M., Kalinowski, D. S., Kovacevic, Z., Coffey, A., Csöllei, J., Richardson, D. R., & Jampílek, J. (2010). Investigating the spectrum of biological activity of ringsubstituted salicylanilides and carbamoylphenylcarbamates. Molecules, 15, 8122–8142. DOI: 10.3390/molecules15118122. http://dx.doi.org/10.3390/molecules1511812210.3390/molecules15118122Search in Google Scholar PubMed PubMed Central

[19] Pancheva, T. V., Popova, L. P., & Uzunova, A. N. (1996). Effects of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149, 57–63. DOI: 10.1016/s0176-1617(96)80173-8. http://dx.doi.org/10.1016/S0176-1617(96)80173-810.1016/S0176-1617(96)80173-8Search in Google Scholar

[20] Pancheva, T. V., & Popova, L. P. (1998). Effect of salicylic acid on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. Journal of Plant Physiology, 152, 381–386. DOI: 10.1016/s0176-1617(98)80251-4. http://dx.doi.org/10.1016/S0176-1617(98)80251-410.1016/S0176-1617(98)80251-4Search in Google Scholar

[21] Popova, L. P., Maslenkova, L. T., Yordanova, R. Y., Ivanova, A. P., Krantev, A. P., Szalai, G., & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry, 47, 224–231. DOI: 10.1016/j.plaphy.2008.11.007. http://dx.doi.org/10.1016/j.plaphy.2008.11.00710.1016/j.plaphy.2008.11.007Search in Google Scholar

[22] Promyou, S., Ketsa, S., & van Doorn, W. G. (2012). Salicylic acid alleviates chilling injury in anthurium (Anthurium andraeanum L.) flowers. Postharvest Biology and Technology, 64, 104–110. DOI: 10.1016/j.postharvbio.2011.10.002. http://dx.doi.org/10.1016/j.postharvbio.2011.10.00210.1016/j.postharvbio.2011.10.002Search in Google Scholar

[23] Renger, G. (1975). The action of 5-chloro-3-tert-butyl-2′-chloro-4′-nitro-salicylanilide and α,α′-bis(hexafluoroacetonyl)acetone on the water-splitting enzyme system Y in spinach chloroplasts. FEBS Letters, 52, 30–32. DOI: 10.1016/0014-5793(75)80630-2. http://dx.doi.org/10.1016/0014-5793(75)80630-210.1016/0014-5793(75)80630-2Search in Google Scholar

[24] Sahu, G. K., Kar, M., & Sabat, S. C. (2002). Electron transport activities of isolated thylakoids from wheat plants grown in salicylic acid. Plant Biology, 4, 321–328. DOI: 10.1055/s-2002-32336. http://dx.doi.org/10.1055/s-2002-3233610.1055/s-2002-32336Search in Google Scholar

[25] Servusová, B., Eibinová, D., Doležal, M., Kubíček, V., Paterová, P., Peško, M., & Kráľová, K. (2012). Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules, 17, 13183–13198. DOI: 10.3390/molecules171113183. http://dx.doi.org/10.3390/molecules17111318310.3390/molecules171113183Search in Google Scholar

[26] Svensson, B., Vass, I., & Styring, S. (1991). Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Zeitschrift für Naturforschung C: Journal of Biosciences, 46, 765–776. 10.1515/znc-1991-9-1008Search in Google Scholar

[27] Uzunova, A. N., & Popova, L. P. (2000). Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 38, 243–250. DOI: 10.1023/a:1007226116925. http://dx.doi.org/10.1023/A:100722611692510.1023/A:1007226116925Search in Google Scholar

[28] Waisser, K., Hladůvková, J., Gregor, J., Rada, T., Kubicová L., Klimešová, V., & Kaustová J. (1998). Relationships between the chemical structure of antimycobacterial substances and their activity against atypical strains. Part 14: 3-Aryl-6,8-dihalogeno-2H-1,3-benzoxazine-2,4(3H)-diones. Archiv der Pharmazie, 331, 3–6. DOI: 10.1002/(SICI)1521-4184(199801)331:1〈3::AID-ARDP3〉3.3.CO;2-U. http://dx.doi.org/10.1002/(SICI)1521-4184(199801)331:1<3::AID-ARDP3>3.0.CO;2-210.1002/(SICI)1521-4184(199801)331:1<3::AID-ARDP3>3.0.CO;2-2Search in Google Scholar

[29] Waisser, K., Hladůvkovš, J., Kuneš, J., Kubicová, L., Klimešov, V., Karajannis, P., & Kaustová, J. (2001). Synthesis and antimycobacterial activity of salicylanilides substituted in position 5. Chemical Papers, 55, 121–129. Search in Google Scholar

[30] Waisser, K., Bureš, O., Holý, P., Kuneš, J., Oswald, R., Jirásková, L., Pour, M., Klimešová, L., & Kaustová, L., & Kaustová J. (2003). Relationship between the structure and antimycobacterial activity of substituted salicylanilides. Archiv der Pharmazie, 336, 53–71. DOI: 10.1002/ardp.200390004. http://dx.doi.org/10.1002/ardp.20039000410.1002/ardp.200390004Search in Google Scholar PubMed

[31] Williamson, R. L., & Metcalf, R. L. (1967). Salicylanilides: A new group of active uncouplers of oxidative phosphorylation. Science, 158, 1694–1695. DOI: 10.1126/science.158.3809.1694. http://dx.doi.org/10.1126/science.158.3809.169410.1126/science.158.3809.1694Search in Google Scholar PubMed

[32] Zhang, L., & Li, X. (2012). Exogenous treatment with salicylic acid attenuates ultraviolet-B radiation stress in soybean seedlings. In E. Zhu, & S. Sambath (Eds.), Information technology and agricultural engineering (Series: Advances in intelligent and soft computing, Vol. 134, pp. 889–894). Heidelberg, Germany: Springer. Search in Google Scholar

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences