Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 17, 2013

Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules

Jin-Feng Zhang, Zhi-Qiang Liu, Xin-Hong Zhang and Yu-Guo Zheng
From the journal Chemical Papers


Biotransformation of iminodiacetonitrile (IDAN) to iminodiacetic acid (IDA) was investigated with a newly isolated Alcaligenes faecalis ZJUTBX11 strain showing nitrilase activity in the immobilized form. To reduce the mass transfer resistance and to increase the toleration ability of the microorganisms to the toxic substrate as well as to enhance their ability to be reused, encapsulation of the whole cells in alginate-chitosan-alginate (ACA) membrane liquid-core capsules was attempted in the present study. The optimal pH and temperature for nitrilase activity of encapsulated A. faecalis ZJUTBX11 cells were 7.5°C and 35°C, respectively, which is consistent with free cells. Based on the Michaelis-Menten model, kinetic parameters of the conversion reaction with IDAN as the substrate were: K m = (17.6 ± 0.3) mmol L−1 and V max = (97.6 ± 1.2) μmol min−1 g−1 of dry cell mass for encapsulated cells and (16.8 ± 0.4) mmol L−1 and (108.0 ± 2.7) μmol min−1 g−1 of dry cell mass for free cells, respectively. After being recycled ten times, the whole cells encapsulated in ACA capsules still retained 90 % of the initial nitrilase activity while only 35 % were retained by free cells. Lab scale production of IDA using encapsulated cells in a bubble column reactor and a packed bed reactor were performed respectively.

[1] Banerjee, A., Sharma, R., & Banerjee, U. C. (2002). The nitrile-degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology, 60, 33–44. DOI: 10.1007/s00253-002-1062-0. in Google Scholar

[2] Banerjee, A., Kaul, P., & Banerjee, U. C. (2006). Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Applied Microbiology and Biotechnology, 72, 77–87. DOI: 10.1007/s00253-005-0255-8. in Google Scholar

[3] Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprst & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126. DOI: 10.1016/j.enzmictec.2004.07.006. in Google Scholar

[4] Chang, P. L., Hortelano, G., Awrey, D. E., & Tse, M. (1994). Growth of recombinant fibroblasts in alginate microcapsules. Biotechnology and Bioengineering, 43, 925–933. DOI: 10.1002/bit.260431005. in Google Scholar

[5] Chen, J., Zheng, Y. G., & Shen, Y. C. (2008). Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotechnology and Applied Biochemistry, 50, 147–153. DOI: 10.1042/ba20070106. in Google Scholar

[6] Dembczynski, R., & Jankowski, T. (2000). Characterisation of small molecules diffusion in hydrogel-membrane liquid-core capsules. Biochemical Engineering Journal, 6, 41–44. DOI: 10.1016/s1369-703x(00)00070-x. in Google Scholar

[7] Förster, M., Mansfeld, J., Dautzenberg, H., & Schellenberger, A. (1996). Immobilization in polyelectrolyte complex capsules: Encapsulation of a gluconate-oxidizing Serratia marcescens strain. Enzyme and Microbial Technology, 19, 572–577. DOI: 10.1016/0141-0229(95)00193-x. in Google Scholar

[8] Gugerli, R., Cantana, E., Heinzen, C., von Stockar, U., & Marison, I. W. (2002). Quantitative study of the production and properties of alginate/poly-l-lysine microcapsules. Journal of Microencapsulation, 19, 571–590. DOI: 10.1080/02652040210140490. in Google Scholar PubMed

[9] He, Y. C., Zhang, Z. J., Xu, J. H., & Liu, Y. Y. (2010). Biocatalytic synthesis of (R)-(−)-mandelic acid from racemic mandelonitrile by cetyltrimethylammonium bromide-permeabilized cells of Alcaligenes faecalis ECU0401. Journal of Industrial Microbiology & Biotechnology, 37, 741–750. DOI: 10.1007/s10295-010-0720-y. in Google Scholar PubMed

[10] He, Y. C., Liu, Y. Y., Ma, C. L., & Xu, J. H. (2011). Modified ferric hydroxamate spectrophotometry for assaying glycolic acid from the hydrolysis of glycolonitrile by Rhodococcus sp CCZU10−1. Biotechnology and Bioprocess Engineering, 16, 901–907. DOI: 10.1007/s12257-011-0156-x. in Google Scholar

[11] Huang, H. R., & Xu, J. H. (2006). Preparation of (S)-mandelic acid from racemate using growing cells of Pseudomonas putida ECU1009 with (R)-mandelate degradation activity. Biochemical Engineering Journal, 30, 11–15. DOI: 10.1016/j.bej.2006.01.010. in Google Scholar

[12] Jin, L. Q., Liu, Z. Q., Xu, J. M., & Zheng, Y. G. (2013). Biosynthesis of nicotinic acid from 3-cyanopyridine by a newly isolated Fusarium proliferatum ZJB-09150. World Journal of Microbiology & Biotechnology, 29, 431–440. DOI: 10.1007/s11274-012-1195-y. in Google Scholar PubMed

[13] Kabaivanova, L., Dobreva, E., Dimitrov, P., & Emanuilova, E. (2005). Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. Journal of Industrial Microbiology and Biotechnology, 32, 7–11. DOI: 10.1007/s10295-004-0189-7. in Google Scholar PubMed

[14] Kaul, P., Banerjee, A., & Banerjee, U. C. (2006). Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules, 7, 1536–1541. DOI: 10.1021/bm0507913. in Google Scholar PubMed

[15] Kobayashi, M., Yanaka, N., Nagasawa, T., & Yamada, H. (1990). Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. Journal of Bacteriology, 172, 4807–4815. 10.1128/jb.172.9.4807-4815.1990Search in Google Scholar PubMed PubMed Central

[16] Kuan, I. C., Wu, J. C., Lee, S. L., Tsai, C. W., Chuang, C. A., & Yu, C. Y. (2010). Stabilization of d-amino acid oxidase from Rhodosporidium toruloides by encapsulation in polyallylamine-mediated biomimetic silica. Biochemical Engineering Journal, 49, 408–413. DOI: 10.1016/j.bej.2010.02.003. in Google Scholar

[17] Kurillova, L., Gemeiner, P., Vikartovska, A., Mikova, H., Rosenberg, M., & Ilavsky, M. (2000). Calcium pectate gel beads for cell entrapment. 6. Morphology of stabilized and hardened calcium pectate gel beads with cells for immobilized biotechnology. Journal of Microencapsulation, 17, 279–296. DOI: 10.1080/026520400288265. in Google Scholar PubMed

[18] Léonard, A., Dandoy, P., Danloy, E., Leroux, G., Meunier, C. F., Rooke, J. C., & Su, B. L. (2011). Whole-cell based hybrid materials for green energy production, environmental reme diation and smart cell-therapy. Chemical Society Reviews, 40, 860–885. DOI: 10.1039/c0cs00024h. in Google Scholar PubMed

[19] Liese, A., Seelbach, K., Wandrey, C., Rao, N. N., Lütz, S., Seelbach, K., & Liese, A. (2006). Basics of bioreaction engineering. In A. Liese, K. Seelbach, and C. Wandrey (Eds.), Industrial biotransformations (pp. 57–91). Weinheim, Germany: Wiley. DOI: 10.1002/9783527608188.ch5. in Google Scholar

[20] Lin, J. Z., Yu, W. T., Liu, X. D., Xie, H.G., Wang, W., & Ma, X. J. (2008). In Vitro and in Vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells. Journal of Bioscience and Bioengineering, 105, 660–665. DOI: 10.1263/jbb.105.660. in Google Scholar PubMed

[21] Liu, Z. Q., Dong, L. Z., Cheng, F., Xue, Y. P., Wang, Y. S., Ding, J. N., Zheng, Y. G., & Shen, Y. C. (2011a). Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10. Journal of Agricultural and Food Chemistry, 59, 11560–11570. DOI: 10.1021/jf202746a. in Google Scholar

[22] Liu, Z. Q., Li, F. F., Cheng, F., Zhang, T., You, Z. Y., Xu, J. M., Xue, Y. P., Zheng, Y. G., & Shen, Y. C. (2011b). A novel synthesis of iminodiacetic acid: Biocatalysis by whole Alcaligenes faecalis ZJB-09133 cells from iminodiacetonitrile. Biotechnology Progress, 27, 698–705. DOI: 10.1002/btpr.603. in Google Scholar

[23] Liu, Z. Q., Zhou, M., Zhang, X. H., Xu, J. M., Xue, Y. P., & Zheng, Y. G. (2012). Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase. Journal of Molecular Microbiology and Biotechnology, 22, 35–47. DOI: 10.1159/000337055. in Google Scholar

[24] Martínková, L., & Křen, V. (2010). Biotransformations with nitrilases. Current Opinion in Chemical Biology, 14, 130–137. DOI: 10.1016/j.cbpa.2009.11.018. in Google Scholar

[25] Nagasawa, T., Mauger, J., & Yamada, H. (1990). A novel nitrilase, arylacetonitrilase, of Alcaligenes Faecalis JM3. Purification and characterization. European Journal of Biochemistry, 194, 765–772. DOI: 10.1111/j.1432-1033.1990.tb19467.x. in Google Scholar

[26] Nigam, V. K., Khandelwal, A. K., Gothwal, R. K., Mohan, M. K., Choudhury, B., Vidyarthi, A. S., & Ghosh, P. (2009). Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. Journal of Biosciences, 34, 21–26. DOI: 10.1007/s12038-009-0005-7. in Google Scholar

[27] O’Reilly, C., & Turner, P. D. (2003). The nitrilase family of CN hydrolysing enzymes — a comparative study. Journal of Applied Microbiology, 95, 1161–1174. DOI: 10.1046/j.1365-2672.2003.02123.x. in Google Scholar

[28] Osprian, I., Jarret, C., Strauss, U., Kroutil, W., Orru, R. V. A., Felfer, U., Willetts, A. J., & Faber, K. (1999). Large-scale preparation of a nitrile-hydrolysing biocatalyst: Rhodococcus R 312 (CBS 717.73). Journal of Molecular Catalysis B: Enzymatic, 6, 555–560. DOI: 10.1016/s1381-1177(99)00009-0. in Google Scholar

[29] Park, J. K., Jin, Y. B., & Chang, H. N. (1999). Reusable biosorbents in capsules from Zoogloea ramigera cells for cadmium removal. Biotechnology and Bioengineering, 63, 116–121. DOI: 10.1002/(sici)1097-0290(19990405)63:1<116::aidbit12>;2-k.<116::AID-BIT12>3.0.CO;2-K10.1002/(SICI)1097-0290(19990405)63:1<116::AID-BIT12>3.0.CO;2-KSearch in Google Scholar

[30] Park, J. K., & Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnology Advances, 18, 303–319. DOI: 10.1016/s0734-9750(00)00040-9. in Google Scholar

[31] Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409, 258–268. DOI: 10.1038/35051736. in Google Scholar

[32] Shukla, V. B., Veera, U. P., Kulkarni, P. R., & Pandit, A. B. (2001). Scale-up of biotransformation process in stirred tank reactor using dual impeller bioreactor. Biochemical Engineering Journal, 8, 19–29. DOI: 10.1016/s1369-703x(00)00130-3. in Google Scholar

[33] Sosedov, O., Matzer, K., Bürger, S., Kiziak, C., Baum, S., Altenbuchner, J., Chmura, A., van Rantwijk, F., & Stolz, A. (2009). Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandelic amide from benzaldehyde and cyanide. Advanced Synthesis & Catalysis, 351, 1531–1538. DOI: 10.1002/adsc.200900087. in Google Scholar

[34] Stormo, K. E., & Crawford, R. L. (1992). Preparation of encapsulated microbial cells for environmental applications. Applied and Environmental Microbiology, 58, 727–730. 10.1128/aem.58.2.727-730.1992Search in Google Scholar

[35] Straathof, A. J., Panke, S., & Schmid, A. (2002). The production of fine chemicals by biotransformations. Current Opinion in Biotechnology, 13, 548–556. DOI: 10.1016/s0958-1669(02)00360-9. in Google Scholar

[36] Woodburn, A. T. (2000). Glyphosate: production, pricing and use worldwide. Pest Management Science, 56, 309–312. DOI: 10.1002/(sici)1526-4998(200004)56:4<309::aid-ps143>;2-3.<309::AID-PS143>3.0.CO;2-C10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-CSearch in Google Scholar

[37] Xu, S. K., Qu, Y. H., Chaouki, J., & Guy, C. (2005). Characterization of homogeneity of bubble flows in bubble columns using RPT and fibre optics. International Journal of Chemical Reactor Engineering, 3, A54. DOI: 10.2202/1542-6580.1264. in Google Scholar

[38] Xue, Y. P., Liu, Z. Q., Xu, M., Wang, Y. J., Zheng, Y. G., & Shen, Y. C. (2010). Enhanced biotransformation of (R,S)-mandelonitrile to (R)-(-)-mandelic acid with in situ production removal by addition of resin. Biochemical Engineering Journal, 53, 143–149. DOI: 10.1016/j.bej.2010.10.009. in Google Scholar

[39] Xue, Y. P., Liu, Z. Q., Xu, M., Wang, Y. J., & Zheng, Y. G. (2011). Efficient separation of (R)-(-)-mandelic acid biosynthesized from (R,S)-mandelonitrile by nitrilase using ion-exchange process. Journal of Chemical Technology and Biotechnology, 86, 391–397. DOI: 10.1002/jctb.2528. in Google Scholar

[40] Zhang, Z. J., Xu, J. H., He, Y. C., Ouyang, L. M., & Liu, Y. Y. (2011). Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp ECU0401 and its potential for (R)-(-)-mandelic acid production. Bioprocess and Biosystems Engineering, 34, 315–322. DOI: 10.1007/s00449-010-0473-z. in Google Scholar PubMed

[41] Zhang, J. F., Liu, Z. Q., Zheng, Y. G., & Shen, Y. C. (2012). Screening and characterization of microorganisms capable of converting iminodiacetonitrile to iminodiacetic acid. Engineering in Life Sciences, 12, 69–78. DOI: 10.1002/elsc.201100090. in Google Scholar

[42] Zhang, J. F., Liu, Z. Q., & Zheng, Y. G. (2013). Improvement of nitrilase production from a newly isolated Alcaligenes faecalis mutant for biotransformation of iminodiacetonitrile to iminodiacetic acid. Journal of the Taiwan Institute of Chemical Engineers, 44, 169–176. DOI: 10.1016/j.jtice.2012.11.010. in Google Scholar

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences