Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 12, 2014

Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate

  • Anton Gatial EMAIL logo , Marcela Múdra , Ján Moncoľ , Marta Danková , Peter Lönnecke and Martin Breza
From the journal Chemical Papers

Abstract

In the memory of Prof. Ing. Ladislav Valko, DrSc. (1930–2013) A room-temperature synthesis of copper(II) 2-pyridylmethanolate tetrahydrate, [CuL2] · 4H2O, with nearly quantitative yields with its structure redetermined at 213 K is presented. In agreement with the X-ray structure data, the DFT quantum-chemical calculations confirmed the planar structure of CuL2 (C 2h symmetry). The measured IR and Raman spectra were interpreted using the DFT calculations and some erroneous assignments in the previous studies have been corrected.

[1] Antonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K., & Lindoy, L. F. (2007). Proton and anion control of framework complexity in copper(II) complex structures derived from 2-(hydroxymethyl)pyridine. Polyhedron, 26, 673–678. DOI: 10.1016/j.poly.2006.08.031. http://dx.doi.org/10.1016/j.poly.2006.08.03110.1016/j.poly.2006.08.031Search in Google Scholar

[2] Arenas, J. F., Tocón, I. L., Otero, J. C., & Marcos, J. I. (1997). Vibrational spectrum of 2-methylpyridine. Journal of Molecular Structure, 410, 443–446. DOI: 10.1016/s0022-2860(96)09699-8. 10.1016/S0022-2860(96)09699-8Search in Google Scholar

[3] Bacsa, J., Zhao, H. H., & Dunbar, K. R. (2004). Bis(pyridin-2-ylmethanolato-κ 2N,O)bis(trifluoroacetato)nickel(II). Acta Crystallographica Section E: Structure Reports Online, 60, m1040–m1042. DOI: 10.1107/s160053680401565x. http://dx.doi.org/10.1107/S160053680401565X10.1107/S160053680401565XSearch in Google Scholar

[4] Bauschlicher, C. W., Jr., Langhoff, S. R., Patridge, H., & Barnes, L. A. (1989). Theoretical-studies of the first- and second-row transition-metal methyls and their positiveions. Journal of Chemical Physics, 91, 2399–2411. DOI: 10.1063/1.456998. http://dx.doi.org/10.1063/1.45699810.1063/1.456998Search in Google Scholar

[5] Bouwman, E., Bolcar, M. A., Libby, E., Huffman, J. C., Folting, K., & Christou, G. (1992). Tetranuclear manganese(III)-oxo carboxylate complexes possessing terminal phenoxide or alkoxide ligands. Inorganic Chemistry, 31, 5185–5192. DOI: 10.1021/ic00051a008. http://dx.doi.org/10.1021/ic00051a00810.1021/ic00051a008Search in Google Scholar

[6] Brechin, E. K., Knapp, M. J., Huffman, J. C., Hendrickson, D. N., & Christou, G. (2000). New hexanuclear and octanuclear iron(III) oxide clusters: octahedral [Fe6O2]14+ species and core isomerism in [Fe8O4]16+ complexes. Inorganica Chimica Acta, 297, 389–399. DOI: 10.1016/s0020-1693(99)00377-1. http://dx.doi.org/10.1016/S0020-1693(99)00377-110.1016/S0020-1693(99)00377-1Search in Google Scholar

[7] Carpenter, J. E., & Weinhold, F. (1988). Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. Journal of Molecular Strucure: THEOCHEM, 169, 41–62. http://dx.doi.org/10.1016/0166-1280(88)80248-310.1016/0166-1280(88)80248-3Search in Google Scholar

[8] Chantry, G. W. (1971). Polarizability theory for the Raman effect. In A. Anderson (Ed.) The Raman effect (Vol. 1, pp. 49–94). New York, NY, USA: Marcel Dekker. Search in Google Scholar

[9] Cheng, S. C., & Wei, H. H. (2002). Structure, magnetic properties and catecholase activity study of oxo-bridged dinuclear copper(II) complexes. Inorganica Chimica Acta, 340, 105–113. DOI: 10.1016/s0020-1693(02)01059-9. http://dx.doi.org/10.1016/S0020-1693(02)01059-910.1016/S0020-1693(02)01059-9Search in Google Scholar

[10] Draeger, J. A. (1983). Methylpyridines: Vibrational assignments and an approximate force field. Spectrochimica Acta Part A: Molecular Spectroscopy, 39, 809–825. DOI: 10.1016/0584-8539(83)80022-1. http://dx.doi.org/10.1016/0584-8539(83)80022-110.1016/0584-8539(83)80022-1Search in Google Scholar

[11] Escuer, A., Font-Bardía, M., Kumar, S. B., Solans, X., & Vicente, R. (1999). Two new nickel(II) cubane compounds derived from pyridine-2-methoxide (Pym): {Ni4(Pym)4Cl4 (CH3OH)4} and {Ni4(Pym)4(N3)4(CH3OH)4}. Crystal structures and magnetic properties. Polyhedron, 18, 909–914. DOI: 10.1016/s0277-5387(98)00378-7. http://dx.doi.org/10.1016/S0277-5387(98)00378-710.1016/S0277-5387(98)00378-7Search in Google Scholar

[12] Farrugia, L. J. (1997). ORTEP-3 for Windows — a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30, 565–565. DOI: 10.1107/s0021889897003117. http://dx.doi.org/10.1107/S002188989700311710.1107/S0021889897003117Search in Google Scholar

[13] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, W. J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvdor, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Maring, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, revision C1 [computer software]. Pittsburgh, PA, USA: Gaussian. Search in Google Scholar

[14] Gerber, T. I. A., Luzipo, D. G., & Mayer, P. (2005). The coordination of 2-(hydroxymethyl)pyridine to oxorhenium (V). Synthesis and crystal structure of [ReOCl(C5H4N-CH2O)2]. Journal of Chemical Crystallography, 35, 39–41. DOI: 10.1007/s10870-005-1152-9. http://dx.doi.org/10.1007/s10870-005-1152-910.1007/s10870-005-1152-9Search in Google Scholar

[15] Hamamci, S., Yilmaz, V. T., & Thöne, C. (2004). Cisdiaquabis[2-(hydroxymethyl)pyridine]nickel(II) dichloride. Acta Crystallographica Section E: Structure Reports Online, 60, m6–m8. DOI: 10.1107/s1600536803026862. http://dx.doi.org/10.1107/S160053680302686210.1107/S1600536803026862Search in Google Scholar

[16] He, F., & Liu, D. (2005). Bis[2-(hydroxymethyl)pyridine-κ 2N,O]dinitratocopper(II). Acta Crystallographica Section E: Structure Reports Online, 61, m1350–m1351. DOI: 10.1107/s1600536805018696. http://dx.doi.org/10.1107/S160053680501869610.1107/S1600536805018696Search in Google Scholar

[17] Hoang, N. N., Valach, F., Dunaj-Jurčo, M., & Melník, M. (1992). Structure of bis(salicylato)bis(2-pyridylmethanol) copper(II). Acta Crystallographica Section C: Crystal Structure Communications, 48, 443–445. DOI: 10.1107/s0108270191009897. 10.1107/S0108270191009897Search in Google Scholar

[18] Ito, M., & Onaka, S. (2004). Versatility of pyridine-2-methanol as a chelating ligand toward a manganese ion: synthesis and X-ray structural analysis on some manganese-pyridine-2-methanol derivatives. Inorganica Chimica Acta, 357, 1039–1046. DOI: 10.1016/j.ica.2003.09.028. http://dx.doi.org/10.1016/j.ica.2003.09.02810.1016/j.ica.2003.09.028Search in Google Scholar

[19] Janiak, C. (2000). A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society: Dalton Transactions, 2000, 3885–3896. DOI: 10.1039/b003010o. 10.1039/b003010oSearch in Google Scholar

[20] Jomova, K., Vondrakova, D., Lawson, M., & Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345, 91–104. DOI: 10.1007/s11010-010-0563-x. http://dx.doi.org/10.1007/s11010-010-0563-x10.1007/s11010-010-0563-xSearch in Google Scholar PubMed

[21] Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283, 65–87. DOI: 10.1016/j.tox.2011.03.001. http://dx.doi.org/10.1016/j.tox.2011.03.00110.1016/j.tox.2011.03.001Search in Google Scholar PubMed

[22] Jomova, K., Baros, S., & Valko, M. (2012). Redox active metalinduced oxidative stress in biological systems. Transition Metal Chemistry, 37, 127–134. DOI: 10.1007/s11243-012-9583-6. http://dx.doi.org/10.1007/s11243-012-9583-610.1007/s11243-012-9583-6Search in Google Scholar

[23] Klots, T. D. (1995). Vibrational spectra of indene. Part 4. Calibration, assignment and ideal-gas thermodynamics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51, 2307–2324. DOI: 10.1016/0584-8539(95)01431-4. http://dx.doi.org/10.1016/0584-8539(95)01431-410.1016/0584-8539(95)01431-4Search in Google Scholar

[24] Klots, T. D. (1998). Raman vapor spectrum and vibrational assignment for pyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54, 1481–1498. DOI: 10.1016/s1386-1425(98)00054-7. http://dx.doi.org/10.1016/S1386-1425(98)00054-710.1016/S1386-1425(98)00054-7Search in Google Scholar

[25] Krishnan, R. B., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal of Chemical Physics, 72, 650. DOI: 10.1063/1.438955. 10.1063/1.438955Search in Google Scholar

[26] Lah, N., Leban, I., & Clérac, R. (2006). The assembly of dinuclear alkoxido-bridged CuII halide complexes of pyridine alcohols to form tetranuclear and polynuclear compounds: Synthesis, structure and magnetic properties. European Journal of Inorganic Chemistry, 2006, 4888–4894. DOI: 10.1002/ejic.200600596. http://dx.doi.org/10.1002/ejic.20060059610.1002/ejic.200600596Search in Google Scholar

[27] Maroszová, J., Stachová, P., Vasková, Z., Valigura, D., & Koman, M. (2006). (3,5-Dinitrobenzoato-κO)bis[(2-pyridyl)-methanol-κ 2N,O]copper(II) 3,5-dinitrobenzoate. Acta Crystallographica Section E: Structure Reports Online, 62, m109–m110. DOI: 10.1107/s1600536805041310. http://dx.doi.org/10.1107/S160053680504131010.1107/S1600536805041310Search in Google Scholar

[28] Martos-Calvente, R., de la Peña O’Shea, V. A., Campos-Martin, J. M., Fierro, J. L. G., & Gutiérrez-Puebla, E. (2004). Synthesis of bis[N,O-{2′-pyridyl-methanolate}]dioxomolybdenum(VI) epoxidation catalyst and novel crystal structure derived from X-ray diffraction and DFT calculations. Journal of Molecular Catalysis A: Chemical, 214, 269–272. DOI: 10.1016/j.molcata.2003.12.023. http://dx.doi.org/10.1016/j.molcata.2003.12.02310.1016/j.molcata.2003.12.023Search in Google Scholar

[29] McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. Journal of Chemical Physics, 72, 5639. DOI: 10.1063/1.438980. http://dx.doi.org/10.1063/1.43898010.1063/1.438980Search in Google Scholar

[30] Moncol, J., Kalinakova, B., Svorec, J., Kleinova, M., Koman, M., Hudecova, D., Melník, M., Mazúr, M., & Valko, M. (2004a). Spectral properties and bio-activity of copper(II) clofibriates, part III: Crystal structure of Cu(clofibriate)2(2-pyridylmethanol)2, Cu(clofibriate)2 (4-pyridylmethanol)2 (H2O) dihydrate and Cu2(clofibriate)4(N,N-diethylnicotinamide)2. Inorganica Chimica Acta, 357, 3211–3222. DOI: 10.1016/j.ica.2004.03.043. http://dx.doi.org/10.1016/j.ica.2004.03.04310.1016/j.ica.2004.03.043Search in Google Scholar

[31] Moncol, J., Mudra, M., Lönnecke, P., Koman, M., & Melník, M. (2004b). Copper(II) halogenopropionates: Lowtemperature crystal and molecular structure of bis(2,2-dichloropropionato)-di(methyl-3-pyridylcarbamate)copper (II) and bis(2-bromopropionato)-di (2-pyridylmethanol)copper(II). Journal of Coordination Chemistry, 57, 1065–1078. DOI: 10.1080/00958970412331281836. http://dx.doi.org/10.1080/0095897041233128183610.1080/00958970412331281836Search in Google Scholar

[32] Onaka, S., Hong, L., Ito, M., Sunahara, T., Imai, H., & Inoue, K. (2005). Rational synthesis and X-ray structural study of manganese-pyridine-alcohol derivatives. Journal of Coordination Chemistry, 58, 1523–1530. DOI: 10.1080/00958970500078619. http://dx.doi.org/10.1080/0095897050007861910.1080/00958970500078619Search in Google Scholar

[33] Partal, F., Fernández-Gómez, M., López-González, J. J., Navarro, A., & Kearley, G. J. (2000). Vibrational analysis of the inelastic neutron scattering spectrum of pyridine. Chemical Physics, 261, 239–247. DOI: 10.1016/s0301-0104(00)00233-0. http://dx.doi.org/10.1016/S0301-0104(00)00233-010.1016/S0301-0104(00)00233-0Search in Google Scholar

[34] Peng, C. Y., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49–56. DOI: 10.1002/(sici)1096-987x(19960115)17:1〈49::aid-jcc5〉3.3.co;2. http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-010.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0Search in Google Scholar

[35] Polavarapu, P. L. (1990). Ab initio vibrational Raman and Raman optical activity spectra. The Journal of Physical Chemistry, 94, 8106–8112. DOI: 10.1021/j100384a024. http://dx.doi.org/10.1021/j100384a02410.1021/j100384a024Search in Google Scholar

[36] Pongor, G., Pulay, P., Fogarasi, G., & Boggs, J. E. (1984). Theoretical prediction of vibrational spectra. 1. The inplane force field and vibrational spectra of pyridine. Journal of the American Chemical Society, 106, 2765–2769. DOI: 10.1021/ja00322a006. http://dx.doi.org/10.1021/ja00322a00610.1021/ja00322a006Search in Google Scholar

[37] Púčeková-Repická, Z., Moncol, J., Valigura, D., Lis, T., Korabik, M., Melník, M., Mroziński, J., & Mazúr, M. (2007). Synthesis, structure, spectral and magnetic properties of 4-methoxy- and 3-methylsalicylatocopper(II) complexes with 2-pyridylmethanol. Journal of Coordination Chemistry, 60, 2449–2460. DOI: 10.1080/00958970701272565. http://dx.doi.org/10.1080/0095897070127256510.1080/00958970701272565Search in Google Scholar

[38] Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899–926. DOI: 10.1021/cr00088a005. http://dx.doi.org/10.1021/cr00088a00510.1021/cr00088a005Search in Google Scholar

[39] Roeges, N. P. G. (1994). Guide to the complete interpretation of infrared spectra of organic structures. Chichester, UK: Wiley. Search in Google Scholar

[40] Rochon, F. D., Melanson, R., & Kong, P. C. (1997). Synthesis and crystal structures of oxo pyridinemethanolate technetium(V) complexes. Inorganica Chimica Acta, 254, 303–307. DOI: 10.1016/s0020-1693(96)05176-6. http://dx.doi.org/10.1016/S0020-1693(96)05176-610.1016/S0020-1693(96)05176-6Search in Google Scholar

[41] Scott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory and semiempirical scale factors. The Journal of Physical Chemistry, 100, 16502–16513. DOI: 10.1021/jp960976r. http://dx.doi.org/10.1021/jp960976r10.1021/jp960976rSearch in Google Scholar

[42] Shindo, H., Walter, J. L., & Hooper, R. J. (1965). An infra-red study of bis-(2-pyridylcarbinolo)-chelates. Journal of Inorganic and Nuclear Chemistry, 27, 871–878. DOI: 10.1016/0022-1902(65)80449-3. http://dx.doi.org/10.1016/0022-1902(65)80449-310.1016/0022-1902(65)80449-3Search in Google Scholar

[43] Suzuki, Y., Tomizawa, H., & Miki, E. (1999). Reaction of hydrous nitrosylruthenium trichloride with 2-pyridinemethanol. Inorganica Chimica Acta, 290, 36–43. DOI: 10.1016/s0020-1693(99)00109-7. http://dx.doi.org/10.1016/S0020-1693(99)00109-710.1016/S0020-1693(99)00109-7Search in Google Scholar

[44] Tesmer, M., Müller, B., & Vahrenkamp, H. (1997). Oligonuclear zinc complexes of 2-pyridylmethanol. Chemical Communications, 1997, 721–722. DOI: 10.1039/a607985g. http://dx.doi.org/10.1039/a607985g10.1039/a607985gSearch in Google Scholar

[45] Wachters, A. J. H. (1970). Gaussian basis set for molecular wavefunctions containing third-row atoms. The Journal of Chemical Physics, 52, 1033. DOI: 10.1063/1.1673095. http://dx.doi.org/10.1063/1.167309510.1063/1.1673095Search in Google Scholar

[46] Yang, E. C., Wernsdorfer, W., Hill, S., Edwards, R. S., Nakano, M., Maccagnano, S., Zakharov, L. N., Rheingold, A. L., Christou, G., & Hendrickson, D. N. (2003a). Exchange bias in Ni4 single-molecule magnets. Polyhedron, 22, 1727–1733. DOI: 10.1016/s0277-5387(03)00149-9. http://dx.doi.org/10.1016/S0277-5387(03)00149-910.1016/S0277-5387(03)00149-9Search in Google Scholar

[47] Yang, E. C., Harden, N., Wernsdorfer, W., Zakharov, L. N., Brechin, E. K., Rheingold, A. L., Christou, G., & Hendrickson, D. N. (2003b). Mn4 single-molecule magnets with a planar diamond core and S = 9. Polyhedron, 22, 1857–1863. DOI: 10.1016/s0277-5387(03)00173-6. http://dx.doi.org/10.1016/S0277-5387(03)00173-610.1016/S0277-5387(03)00173-6Search in Google Scholar

[48] Yilmaz, V. T., Guney, S., Andac, O., & Harrison, W. T. A. (2002a). Bis(2-pyridylmethanol)bis(saccharinato)zinc(II) and -cadmium(II) at 120 K: Three-dimensional structures containing both N-and O-coordinated ambidentate saccharinate ligands. Acta Crystallographica Section C: Crystal Structure Communications, 58, m427–m430. DOI: 10.1107/s0108270102010491. 10.1107/S0108270102010491Search in Google Scholar

[49] Yilmaz, V. T., Guney, S., Andac, O., & Harrison, W. T. A. (2002b). Different coordination modes of saccharin in the metal complexes with 2-pyridylmethanol: Synthesis, spectroscopic, thermal and structural characterization. Polyhedron, 21, 2393–2402. DOI: 10.1016/s0277-5387(02)01211-1. http://dx.doi.org/10.1016/S0277-5387(02)01211-110.1016/S0277-5387(02)01211-1Search in Google Scholar

[50] Yilmaz, V. T., Hamamci, S., & Thöne, C. (2004). Cobalt(II) complexes of 2-methanol-, 2,6-dimethanol- and 2-ethanolpyridines: Syntheses, spectroscopic, thermal and structural characterizations of [Co2(µ-Cl)2(mpy)4]Cl2 · 2H2O, [Co(dmpy)2]Cl2 and [Co(Cl)4](Hpyet)2 (mpy = 2-methanolpyridine; dmpy = 2,6-dimethanolpyridine and Hpyet = 2-ethanolpyridinium). Polyhedron, 23, 841–848. DOI: 10.1016/j.poly.2003.12.007. http://dx.doi.org/10.1016/j.poly.2003.12.00710.1016/j.poly.2003.12.007Search in Google Scholar

[51] Yoo, J., Yamaguchi, A., Nakano, M., Krzystek, J., Streib, W. E., Brunel, L. C., Ishimoto, H., Christou, G., & Hendrickson, D. N. (2001). Mixed-valence tetranuclear manganese singlemolecule magnets. Inorganic Chemistry, 40, 4604–4616. DOI: 10.1021/ic0012928. http://dx.doi.org/10.1021/ic001292810.1021/ic0012928Search in Google Scholar PubMed

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-014-0539-5/html
Scroll to top button