Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter February 22, 2012

Karyotype analysis and new chromosome number reports in Achillea species

  • Fatameh Ebrahim EMAIL logo , Hassan Pakniyat , Ahmad Arzani and Mehdi Rahimmalek
From the journal Biologia


Cytological analyses were performed in nineteen accessions belonging to seven Achillea species. The results indicate that two species, A. filipendulina and A. tenuifolia, are diploid (2n = 2x = 18) and three species, A. bieberstinii, A. pachycephala, and A. aucheri are tetraploid (2n = 4x = 36). For two latter species, the chromosome numbers are new. Two ploidy levels of 2n = 6x = 54 and 2n = 8x = 72 in A. millefolium and two ploidy levels of 2n = 2x = 18 and 2n = 4x = 36 in A. santolina species were found. Cluster analysis based on chromosomal characteristics and karyotype asymmetry indices clustered the studied genotypes into three major groups. The first group included the diploid species (A. filipendulina, A. santolina and A. tenufolia), while the second group comprised tetraploid species (A. santolina, A. aucheri and A. pachycephala). A. millefolium (hexaploid, octaploid) and A. bieberstinii (tetraploid) were classified in the third group. Total form percentage (TF%) in groups 1, 2 and 3 were 42.03, 42.15 and 41.08, respectively. Group 1 possessed the highest average of symmetry index (S% = 70.8). Stebbins classification method grouped all accessions in class A. Moreover, group 1 (diploid level species), had the most symmetric karyotype from point of view of centromere and chromosome length. Therefore, it can be concluded that the genotypes belonging to group 1 are the earliest evolutionary form.

[1] Artimage A.M. 1992. Field studies of Achillea as a cut flower: longevity, spacing, and cultivar response. J. Amer. Soc. Hortic. Sci. 117: 65–67. Search in Google Scholar

[2] Baltisberger M. 2006. Cytological investigations on Bulgarian phanerogams. Willdenowia 36: 205–216. 10.3372/wi.36.36117Search in Google Scholar

[3] Benedek B., Kopp B. & Melizg M.F. 2007. Achillea millefolium L.S.l.dis the anti-inflammatory activity mediated by protease inhibition? J. Ethnopharmacol. 113: 312–317. in Google Scholar PubMed

[4] Bremer K. & Humphries C.J. 1993. Generic monograph of the Asteraceae-Anthemideae. Bull. Brit. Mus. (Natl. History) Bot. 23: 71–177. Search in Google Scholar

[5] Bremer K. 1994. Asteraceae: Cladistic and Classification. Portland, OR, Timber Press. Search in Google Scholar

[6] Costa J.Y. & Forni-Martins E.R. 2003. Karyology of some Brazilian species of Alismataceae. Bot. J. Linn. Soc. 143: 159–164. in Google Scholar

[7] Danihelka J. & Rotreklová O. 2001. Chromosome numbers within the Achillea millefolium and the A. distans groups in the Czech Republic and Slovakia. Folia Geobot. 36: 163–191. in Google Scholar

[8] Dabrovska J. 1977 Observations of the fruit size of nine taxons from the genus Achillea L. representing natural di-, tetra-, hexa- and octaploids. Herba Pol. 28: 55–66. Search in Google Scholar

[9] Dabrovska J. 1989. The chromosome numbers of several taxa of the genus Achillea L. Acta Bot. Pol. 58: 163–177. Search in Google Scholar

[10] Ehrendorfer F. 1953. Systmatische und zytogenetische Untersuchungen an europäischen Rassen des Achillea millefolium-Komplexes. (Vorläufige Mitteilung). Öster. Bot. Zeitschrift 100: 583–592. in Google Scholar

[11] Ehrendorfer F. 1959. Differentiation-hybridization cycles and polyploidy in Achillea. Cold Spring Harb. Symp. Quant. Biol.24: 141–152. in Google Scholar

[12] Ehrendorfer F. & Guo Y-P. 2006. Multidisciplinary studies on Achillea sensu lato (Compositae-Anthemideae): new data on systematic and phylogeoography. Willdenowia 36: 69–87. 10.3372/wi.36.36105Search in Google Scholar

[13] Ehrendorfer F. 1973. New chromosome numbers and remarks on the Achillea millefolium polyploid complex in North America. Plant Syst. Evol. 122: 133–143. in Google Scholar

[14] Evenor D. & Reuveni M. 2004. Micropropagation of Achillea filipendulina cv. ‘Parker’. Plant Cell. Tiss. Org. Cult. 79: 91–93. in Google Scholar

[15] Frasi M., Alhoseini Goreishi J. & Jafari E. 2000. Cytological studies of some Iranian Achillea species. J. Agric. Knowl. 11: 18–37 (in Persian) Search in Google Scholar

[16] Ghaffari S. M. 1989. Chromosome studies in Iranian compositae. Iran. J. Bot. 4: 189–196. Search in Google Scholar

[17] Guo Y-P., Saukel J., Mittermayr R. & Ehrendorfer F. 2005. AFLP analyses demonstrate genetic divergence, hybridization, and multiple polyploidization in the evolution of Achillea (Asteraceae-Anthemideae). New Phytol. 166: 273–290. in Google Scholar PubMed

[18] Guo Y-P., Saukel J. & Ehrendorfer F. 2008. AFLP trees versus scatterplots: evolution and phylogeography of the polyploid complex Achillea millefolium agg. (Asteraceae).Taxon 17: 153–169 Search in Google Scholar

[19] Gurevitch J. 1988. Variation in leaf dissection and leaf energy budgets among populations of Achillea from an altitudinal gradient. Amer. J. Bot. 9: 1298–1306. in Google Scholar

[20] Khaniki G.B. 1995. Chromosome numbers and morphometry in Achillea (Anthemideae, compositae). Nucleus 38: 104–111. Search in Google Scholar

[21] Kiran Y., Arabaci T., Sahin A. & Turkoglu I. 2008. Karyological notes on another eight species of Achillea (Asteraceae) from Turkey. Biologia 63: 343–34. in Google Scholar

[22] Magiatis P., Skaltsounis AL., Chinou I. & Haroutounian SA. 2002. Chemical composition and in vitro antimicrobial activity of the oils of three Greek Achillea species. Z. Naturforsch. 57: 287–290. 10.1515/znc-2002-3-415Search in Google Scholar PubMed

[23] Mercado-Ruaro P. & Delgado-Salinas A. 1998. Karyotypic studies on species of Phaseolus (Fabaceae: Phaseolinae). Amer. J. Bot. 85: 1–9. in Google Scholar

[24] Pireh W. & Tyrl RJ. 1980. Cytogeography of Achillea millefolium in Oklahoma and adjacent States. Rhodora 80: 361–367. Search in Google Scholar

[25] Post G.E. 1933. Flora of Syria, Palestina and Sinai. American Press, Beirut 2: 44–47. Search in Google Scholar

[26] Rahimmalek M., Sayed Tabatabaei B.E., Arzani A. & Etemadi N. 2009. Assessment of genetic diversity among and within Achillea species using amplified fragment length polymorphism (AFLP). Bioch. Syst. Ecol. 37: 354–361. in Google Scholar

[27] Rechinger K.H. 1963. Flora Iranica. No. 158. Akademische Druke-U. Verlagsanstalt, Wien, Austria, pp. 49–71. Search in Google Scholar

[28] Reeves A. 2001. Micromeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44: 439–443. in Google Scholar

[29] Ronald J & Tyrl R.J. 1975. Origin and distribution of polyploid Achillea (composite) in western north America. Brittonia 27: 187–196 in Google Scholar

[30] Ruas P.M., Ruas C.F., Maffei E.M.D. & Marin-Morales M.A. 2000. Chromosome studies in the genus Mikania (Asteraceae). Genet. Mol. Biol. 23: 979–98. in Google Scholar

[31] Sahin A., Kiran Y., Arabaci T. & Turkoglu I. 2006. Karyological notes on eight species of Achillea L. (Asteraceae, Santolinoideae) from Turkey. Bot. J. Linn. Soc. 151: 573–580. in Google Scholar

[32] Saukel J., Ancev M., Guo Y-P., Vitkova A., Nedelcheva A., Goranova V., Konakchiev A., Lambrou M., Nejati S., Rauchensteiner F. & Ehrendorfer F. 2004. Comments on the biosystematics of Achillea (Asteraceae-Anthemidae) in Bulgaria. Phytol. Balcanica 9: 361–400. Search in Google Scholar

[33] Sheidai M., Azanei N. & Attar F. 2009. New chromosome number and unreduced pollen formation in Achillea species (Asteraceae). Acta Biol. Szeged 53: 39–43. Search in Google Scholar

[34] Stebbins G. L. 1971. Chromosomal evolution in higher plants. E. Arnold Ltd., London, UK. Search in Google Scholar

[35] Zheng-Yi W. & Raven P.H. 1994. Flora of China. Vol. 17. Science Press, Missouri Botanical Garden, USA. Search in Google Scholar

Published Online: 2012-2-22
Published in Print: 2012-4-1

© 2012 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.6.2023 from
Scroll to top button