Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter August 19, 2014

Factors influencing the appearance of spider (Araneae) and beetle (Coleoptera) assemblages in nests of great reed warbler Acrocephalus arundinaceus

  • Thomas Mérő EMAIL logo , Maja Janjatović , Roland Horváth , Katarina Mrkobrad and Antun Žuljević
From the journal Biologia


The appearance of spider (Araneae) and beetle (Coleoptera) assemblages found in nests of great reed warbler Acrocephalus arundinaceus was studied, firstly to investigate breeding success and the amount of precipitation as potential factors which might affect the abundance and species richness of both groups. In addition, we compared the diversity of spider and beetle assemblages between nests found in different reed habitats, and considered the position of nests (above water or dry ground). In this study we selected five different randomly chosen reed habitats: two mining ponds, two small canals and one large canal. Great Reed Warbler nests were collected either shortly after fledging, or after the clutch had failed. Altogether, 12 species of spider and 19 species of beetle were collected. In both groups there was no significant difference in abundance between successful, lost and cuckoo-parasitized nests; however, there was a significant difference in species richness between the three nest categories in spider assemblages, which was not the case in beetle assemblages. The amount of precipitation did not affect beetle or spider abundance; only the species richness of spiders showed significant growth. Furthermore, we found no significant relationship between vegetation cover and the species richness and abundance of spiders and beetles. The diversity of both groups differed significantly according to reed habitat: beetle assemblages were most diverse by the large canal and spiders at the mining ponds.

[1] Antunes S.C., Pereira R., Sousa J.P., Santos M.C. & Gonçalves F. 2008. Spatial and temporal distribution of litter arthropods in different vegetation covers of Porto Santo Island (Madeira Archipelago, Portugal). Eur. J. Soil Biol. 44(1): 45–56. DOI: 10.1016/j.ejsobi.2007.08.016 in Google Scholar

[2] Bang C. & Faeth S.H. 2011. Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landscape Urban Plan. 103(3–4): 383–399. DOI: 10.1016/j.landurbplan.2011.08.013 in Google Scholar

[3] Beier J. 1981. Untersuchungen an Drossel- und Teichrohrsanger (Acrocephalus arundinaceus, A. scirpaceus): Bestandsentwicklung, Brutbiologie, Ökologie. J. Ornithol. 122(3): 209–230. DOI: 10.1007/BF01645337 in Google Scholar

[4] Bonte D., Leon B. & Maelfait J.P. 2002. Spider assemblage structure and stability in a heterogeneous coastal dune system. J. Arachn. 30(2): 331–343.[0331:SASASI]2.0.CO;2Search in Google Scholar

[5] Carrel J.E. 2001. Population dynamics of the red widow spider (Araneae: Theridiidae). Florida Entomologist 84(3): 385–390. (accessed July 2013) in Google Scholar

[6] Cramp S. 1998. The Complete Birds of the Western Palearctic. Oxford University Press. (Based on Stanley Cramp’s definitive and critically acclaimed nine-volume) Windows CDROM. ISBN: 0192685791, 9780192685797 Search in Google Scholar

[7] Dražina T. & Špoljar M. 2009. Insect fauna in nest of the Eurasian griffon vulture (Gyps fulvus) in Croatia. Biologia 64(5): 969–973. DOI: 10.2478/s11756-009-0147-y in Google Scholar

[8] Đukanović D. 1970. Klima Sombora i okoline. Beograd, 134 pp. Search in Google Scholar

[9] Finnamore A.T., Winchester N.N. & Behan-Pelletier V.M. 1998. Protocols for Measuring Biodiversity: Arthropod Monitoring in Terrestrial Ecosystems. Biodiversity Science Board of Canada, Ecological Monitoring and Assessment Network (EMAN), Burlington, Ontario, 53 pp. Search in Google Scholar

[10] Fischer S. 1994. Einfluss der Witterung auf den Bruterfolg des Drosselrohrsangers Acrocephalus arundinaceus am Berliner Müggelsee. Vogelwelt 115(6): 287–292. Search in Google Scholar

[11] Gajdoš P., Krištofík J. & Šustek Z. 1991. Spiders (Araneae) in the birds nests in Slovakia. Biologia 46(10): 887–905. Search in Google Scholar

[12] Graveland J. 1998. Reed die-back, water level management and the decline of the Great Reed Warbler Acrocephalus arundinaceus in the Netherlands. Ardea 86(2): 187–201. Search in Google Scholar

[13] Grimbacher P.S. & Stork N.E. 2009. Seasonality of a diverse beetle assemblage inhabiting lowland tropical rain forest in Australia. Biotropica 41(3): 328–337. DOI: 10.1111/j.1744-7429.2008.00477.x in Google Scholar

[14] Jurík M. & Šustek Z. 1978. The Coleoptera in nests of Passer domesticus in Czechoslovakia. Vestn. Česk. Spol. Zool. 17(4): 255–272. Search in Google Scholar

[15] Krištofík J., Mašán P. & Šustek Z. 2001. Mites (Acari), beetles (Coleoptera) and fleas (Siphonaptera) in the nests of great reed warbler (Acrocephalus arundinaceus) and reed warbler (A. scirpaceus). Biologia 56(5): 525–536. Search in Google Scholar

[16] Krištofík J., Mašán P. & Šustek Z. 2005. Arthropods in the nests of marsh warbler (Acrocephalus palustris). Biologia 60(2): 171–177. Search in Google Scholar

[17] Krištofík J., Mašán P. & Šustek Z. 2007. Arthropods (Pseudoscorpionida, Acari, Copleptera, Siphonaptera) in the nests of the bearded tit (Panurus biarmicus). Biologia 62(6): 749–755. DOI: 10.2478/s11756-007-0142-0 in Google Scholar

[18] Krištofík J., Mašán P., Šustek Z. & Gajdoš P. 1993. Arthropods in the nests of penduline tit (Remiz pendulinus). Biologia 48(5): 493–505. Search in Google Scholar

[19] Krištofík J., Mašán P., Šustek Z. & Karaska D. 2009. Arthropods in the nests of the lesser spotted eagle (Aquila pomarina). Biologia 64(5): 974–980. DOI: 10.2478/s11756-009-0148-x in Google Scholar

[20] Krištofík J., Mašán P., Šustek Z. & Kloubec B. 2003. Arthropods (Pseudoscorpionida, Acari, Copleptera, Siphonaptera) in the nests of the tengmalm’s owl Aegolius funereus. Biologia 58(2): 231–240. Search in Google Scholar

[21] Krištofík J., Šustek Z. & Gajdoš P. 1994. Arthropods in the nests of the Sand Martin (Riparia riparia Linnaeus, 1758) in South Slovakia. Biologia 49(5): 683–690. Search in Google Scholar

[22] Krištofík J., Šustek Z. & Gajdoš P. 1995. Arthropods in the penduline tit (Remiz pendulinus) nests: occurrence and abundance in different breeding phases. Biologia 50(5): 487–493. Search in Google Scholar

[23] la Puente J.M., Lobato S.M.E., Aguilar J.R., del Cerro S., Castañeda R.R. & Moreno J. 2010. Nest-climatic factors affect the abundance of biting flies and their effects on nestling condition. Acta Oecol. 36(6): 543–547. DOI: 10.1016/j.actao.2010.07.008 in Google Scholar

[24] Leisler B. 1981. Die ökologische Einmischung der mitteleuropaischen Rohrsanger (Acrocephalus, Sylviinae). I. Habitattranung. Vogelwarte 31: 45–74. Search in Google Scholar

[25] Logan J.D., Wolesensky W. & Joern A. 2006. Temperaturedependent phenology and predation in arthropod systems. Ecol. Modell. 196(3–4): 471–482. DOI: 10.1016/j.ecolmodel.2006.02.034 in Google Scholar

[26] Majka C.G., Klimaszewski J. & Lauff R.F. 2006. New Coleoptera records from owl nests in Nova Scotia, Canada. Zootaxa 1194: 33–47. 10.11646/zootaxa.1194.1.2Search in Google Scholar

[27] McDonald, B. 2007. Effects of vegetation structure on foliage dwelling spider assemblages in native and non-native Oklahoma grassland habitats. Proc. Okla. Acad. Sci. 87: 85–88. Search in Google Scholar

[28] Mérő T.O. & Žuljević A. 2009. Breeding density and breeding success of the Great Reed Warbler Acrocephalus arundinaceus in Sombor municipality (In Serbian with English summary). Ciconia 18: 91–98. Search in Google Scholar

[29] Nilsson L. & Persson H. 1986. Choice of nest site, clutch size and nesting success in population of Reed Warbler, Acrocephalus scirpaceus, in South Sweden. Vør Føgelwärld 45(6): 340–346. Search in Google Scholar

[30] Orozco J. & Perez M. 2008. Coprophagous scarab beetles (Coleoptera, Scarabaeoidea) of Los Estoraques National Park (Norte de Santander, Colombia). Rev. Bras. Entomol. 52(1): 36–40. DOI: 10.1590/S0085-56262008000100007. in Google Scholar

[31] Prokešová J. & Kocian Ľ. 2004. Habitat selection of two Acrocephalus warblers breeding in reed beds near Malacky (Western Slovakia). Biologia 59(5): 637–644. Search in Google Scholar

[32] R Development Core Team 2011. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Search in Google Scholar

[33] Rodrigues E.N.L., Mendonca M.D. & Ricardo O. 2008. Spider fauna (Arachnida, Araneae) in differents stages of the irrigated rice culture in Cachoeirinha, RS, Brazil. Iheringia Sér. Zool. 98(3): 362–371. DOI: 10.1590/S0073-47212008000300011 in Google Scholar

[34] Sasal Y., Raffaele E. & Farji-Brener A.G. 2010. Succession of ground-dwelling beetle assemblages after fire in three habitat types in the Andean forest of NW Patagonia, Argentina. J. Insect Sci. 10: 1–17. DOI: 10.1673/031.010.3701 in Google Scholar PubMed PubMed Central

[35] Šustek Z. & Hornychová D. 1983. The Beetles in the nests of Delichon urbica in Slovakia. Acta Rer. Natur. Mus. Nat. Slov. 29: 119–134. Search in Google Scholar

[36] Šustek Z. & Jurík M. 1980. The Coleoptera from the nests of Riparia riparia in Czechoslovakia. Vestn. Česk. Spol. Zool. 44: 286–292. Search in Google Scholar

[37] Šustek Z. & Krištofík J. 2002. Beetles (Coleoptera) in deserted nests of Phoenicurus ochruros, Parus caeruleus, Parus major, Sitta europaea, and Sturnus vulgaris. Entomofauna carpathica 14: 64–69. Search in Google Scholar

[38] Šustek Z. & Krištofík J. 2003. Beetles (Coleoptera) in the nests of house and tree sparrows (Passer domesticus and P. montanus). Biologia 58(5): 953–965. Search in Google Scholar

[39] Tomić P. 1996. Klima, pp. 16–21. In: Đuričić J. (ed.), Opština Sombor, Prirodno-matematički fakultet, Institut za geografiju, Prosveta, Novi Sad. Search in Google Scholar

[40] Touloumis K. & Stamou G.P. 2009. A metapopulation approach of the dynamics of arthropods from Mediterraneantype ecosystems. Ecological Modelling 220(8): 1105–1112. DOI: 10.1016/j.ecolmodel.2009.01.032 in Google Scholar

[41] van Der Hut R.M.G. 1986. Habitat choice and temporal differentiation in reed Passerines of a dutch marsh. Ardea 74(2): 159–176. Search in Google Scholar

Published Online: 2014-8-19
Published in Print: 2014-7-1

© 2014 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2023 from
Scroll Up Arrow