Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 29, 2013

Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence

  • D. Milej EMAIL logo , A. Gerega , M. Kacprzak , P. Sawosz , W. Weigl , R. Maniewski and A. Liebert
From the journal Opto-Electronics Review

Abstract

Time-resolved near-infrared spectroscopy is an optical technique which can be applied in tissue oxygenation assessment. In the last decade this method is extensively tested as a potential clinical tool for noninvasive human brain function monitoring and imaging. In the present paper we show construction of an instrument which allows for: (i) estimation of changes in brain tissue oxygenation using two-wavelength spectroscopy approach and (ii) brain perfusion assessment with the use of single-wavelength reflectometry or fluorescence measurements combined with ICG-bolus tracking. A signal processing algorithm based on statistical moments of measured distributions of times of flight of photons is implemented. This data analysis method allows for separation of signals originating from extra- and intracerebral tissue compartments. In this paper we present compact and easily reconfigurable system which can be applied in different types of time-resolved experiments: two-wavelength measurements at 687 and 832 nm, single wavelength reflectance measurements at 760 nm (which is at maximum of ICG absorption spectrum) or fluorescence measurements with excitation at 760 nm. Details of the instrument construction and results of its technical tests are shown. Furthermore, results of in-vivo measurements obtained for various modes of operation of the system are presented.

[1] F.F. Jobsis, “Noninvasive, Infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters”. Science 198, 1264–1267 (1977). http://dx.doi.org/10.1126/science.92919910.1126/science.929199Search in Google Scholar

[2] S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt, and E.O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation”, Biochim Biophys Acta. 933, 184–192 (1988). http://dx.doi.org/10.1016/0005-2728(88)90069-210.1016/0005-2728(88)90069-2Search in Google Scholar

[3] A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults”, Neurosci. Lett. 154, 101–104 1993). http://dx.doi.org/10.1016/0304-3940(93)90181-J10.1016/0304-3940(93)90181-JSearch in Google Scholar

[4] A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function”, Trends In Neurosciences 20, 435–442 (1997). http://dx.doi.org/10.1016/S0166-2236(97)01132-610.1016/S0166-2236(97)01132-6Search in Google Scholar

[5] G. Litscher and G. Schwarz, Transcranial Cerebral Oximetry, Pabst Sci. Pub. Lengerich, 1997. Search in Google Scholar

[6] A.F. Cannestra, I. Wartenburger, H. Obrig, A. Villringer, and A.W. Toga, “Functional assessment of Broca’s area using near infrared spectroscopy in humans”, Neuroreport 14, 1961–5 (2003). http://dx.doi.org/10.1097/00001756-200310270-0001610.1097/00001756-200310270-00016Search in Google Scholar PubMed

[7] H. Obrig and A. Villringer, “Beyond the visible — Imaging the human brain with light”, J. Cerebr. Blood F. Met. 23, 1–18 (2003). http://dx.doi.org/10.1097/00004647-200301000-0000110.1097/00004647-200301000-00001Search in Google Scholar

[8] G. Schlaug, A. Benfield, A.E. Baird, B. Siewert, K.O. Lovblad, R.A. Parker, R.R. Edelman, and S. Warach, “The ischemic penumbra: operationally defined by diffusion and perfusion MRI”, Neurolog. 53, 1528–37 (1999). http://dx.doi.org/10.1212/WNL.53.7.152810.1212/WNL.53.7.1528Search in Google Scholar

[9] K.A. Miles, “Perfusion imaging with computed tomography: brain and beyond”, Eur Radiol. 16Suppl 7, 37–43 (2006). Search in Google Scholar

[10] E. Facco, P. Zucchetta, M. Munari, F. Baratto, A.U. Behr, M. Gregianin, A. Gerunda, F. Bui, M. Saladini, and G. Giron, “99mTc-HMPAO SPECT in the diagnosis of brain death” Intens. Care Med. 24, 911–7 (1998). http://dx.doi.org/10.1007/s00134005068910.1007/s001340050689Search in Google Scholar PubMed

[11] H.H. Abu-Judeh, R. Parker, S. Aleksic, M.L. Singh, S. Naddaf, S. Atay, M. Kumar, W. Omar, H. El-Zeftawy, J.Q. Luo, and H.M. Abdel-Dayem, “SPECT brain perfusion findings in mild or moderate traumatic brain injury”, Nucl. Med. Rev. Cent. East Eur. 3, 5–11 (2000). Search in Google Scholar

[12] U. Roelcke, “Imaging brain tumors with PET, SPECT, and ultrasonography”, Handb. Clin. Neurol. 104, 135–42 (2012). http://dx.doi.org/10.1016/B978-0-444-52138-5.00010-410.1016/B978-0-444-52138-5.00010-4Search in Google Scholar PubMed

[13] J.M. Gruner, R. Paamand, L. Hojgaard, and I. Law, “Brain perfusion CT compared with 15O-H2O-PET in healthy subjects”, EJNMMI Res. 1, 28 (2011). http://dx.doi.org/10.1186/2191-219X-1-2810.1186/2191-219X-1-28Search in Google Scholar PubMed PubMed Central

[14] J.A. Wahr, K.K. Tremper, S. Samra, and D.T. Delpy, “Near-infrared spectroscopy: theory and applications”, J. Cardiothorac Vasc. Anesth. 10, 406–418 (1996). http://dx.doi.org/10.1016/S1053-0770(96)80107-810.1016/S1053-0770(96)80107-8Search in Google Scholar

[15] V. Quaresima, M. Ferrari, M.C.P. van der Sluijs, J. Menssen, and W. Colier, “Lateral frontal cortex oxygenation changes during translation and language switching revealed by non-invasive near-infrared multi-point measurements”, Brain Res. Bull. 59, 235–243 (2002). http://dx.doi.org/10.1016/S0361-9230(02)00871-710.1016/S0361-9230(02)00871-7Search in Google Scholar

[16] M. Diop, J.T. Elliott, K.M. Tichauer, T.Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets”, Rev. Sci. Instrum. 80, 054302 (2009). http://dx.doi.org/10.1063/1.312334710.1063/1.3123347Search in Google Scholar PubMed

[17] K. van Rossem, S. Garcia-Martinez, G. De Mulder, B. Van Deuren, K. Engelborghs, J. Van Reempts, and M. Borgers, “Brain oxygenation after experimental closed head injury. A NIRS study”, Adv. Exp. Med. Biol. 471, 209–15 (1999). http://dx.doi.org/10.1007/978-1-4615-4717-4_2510.1007/978-1-4615-4717-4_25Search in Google Scholar PubMed

[18] Y. Murata, Y. Katayama, H. Oshima, T. Kawamata, T. Yamamoto, K. Sakatani, and S. Suzuki, “Changes in cerebral blood oxygenation induced by deep brain stimulation: study by near-infrared spectroscopy (NIRS)”, Keio J. Med. 49Suppl 1, 61–3 (2000). Search in Google Scholar

[19] R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis”, Opto-Electron. Rev. 12, 255–262 (2004). Search in Google Scholar

[20] J.C. Hebden, S.R. Arridge, and D.T. Delpy, “Optical imaging in medicine: I. Experimental techniques”, Phys. Med. Biol. 42, 825–40 (1997). http://dx.doi.org/10.1088/0031-9155/42/5/00710.1088/0031-9155/42/5/007Search in Google Scholar PubMed

[21] E.M. Sevick-Muraca, J.S. Reynolds, J. Lee, D. Hawrysz, A.B. Thompson, R.H. Mayer, R. Roy, and T.L. Troy, “Fluorescence lifetime imaging of tissue volumes using near- infrared frequency domain photon migration”, Photochem. Photobiol. 69, 66S–66S (1999). Search in Google Scholar

[22] J. Zhao, H.S. Ding, X.L. Hou, C.L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy”, J. Biomed. Opt. 10, 024028 (2005). http://dx.doi.org/10.1117/1.189134510.1117/1.1891345Search in Google Scholar PubMed

[23] M.S. Patterson, B. Chance, and B.C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurements of tissue optical properties”, Appl. Opt. 28,. 2331–2336 (1989). http://dx.doi.org/10.1364/AO.28.00233110.1364/AO.28.002331Search in Google Scholar PubMed

[24] J. Hebden, R. Kruger, and K. Wong, “Time resolved imaging trough a highly scattering medium”, Appl. Opt. 30, 788–794 (1991). http://dx.doi.org/10.1364/AO.30.00078810.1364/AO.30.000788Search in Google Scholar PubMed

[25] J. Hebden and K. Wong, “Time-resolved optical tomography”, Appl. Opt. 32, 372–380 (1993). http://dx.doi.org/10.1364/AO.32.00037210.1364/AO.32.000372Search in Google Scholar PubMed

[26] R.R. Alfano, S.G. Demos, and S.K. Gayen, “Advances in optical imaging of biomedical media”, Ann. NY Acad. Sci. 820, 248–70; discussion 271 (1997). http://dx.doi.org/10.1111/j.1749-6632.1997.tb46200.x10.1111/j.1749-6632.1997.tb46200.xSearch in Google Scholar PubMed

[27] R.R. Alfano, S.G. Demos, P. Galland, S.K. Gayen, Y. Guo, P.P. Ho, X. Liang, F. Liu, L. Wang, Q.Z. Wang, and W.B. Wang, “Time-resolved and nonlinear optical imaging for medical applications”, Ann NY Acad. Sci. 838, 1428 (1998). Search in Google Scholar

[28] H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sas- saroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system”, Rev. Sci. Instrum. 70, 3595–3602 (1999). http://dx.doi.org/10.1063/1.114996510.1063/1.1149965Search in Google Scholar

[29] S. Okawa, A. Yano, K. Uchida, Y. Mitsui, M. Yoshida, M. Takekoshi, A. Marjono, F. Gao, Y. Hoshi, I. Kida, K. Masa- moto, and Y. Yamada, “Phantom and mouse experiments of time-domain fluorescence tomography using total light approach”, Biomed Opt. Express 4, 635–51 (2013). http://dx.doi.org/10.1364/BOE.4.00063510.1364/BOE.4.000635Search in Google Scholar

[30] W.M. Kuebler, A. Sckell, O. Habler, M. Kleen, G.E.H. Kuh- nle, M. Welte, K. Messmer, and A.E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green”, J. Cerebr. Blood F. Met. 18, 445–456 (1998). http://dx.doi.org/10.1097/00004647-199804000-0001310.1097/00004647-199804000-00013Search in Google Scholar

[31] J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A.D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green”, Pediatr. Res. 43, 34–9 (1998). http://dx.doi.org/10.1203/00006450-199801000-0000610.1203/00006450-199801000-00006Search in Google Scholar

[32] D.W. Brown, P.A. Picot, J.G. Naeini, R. Springett, D.T. Delpy, and T.Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets”, Pediatr. Res. 51, 564–70 (2002). http://dx.doi.org/10.1203/00006450-200205000-0000410.1203/00006450-200205000-00004Search in Google Scholar

[33] J.T. Elliott, M. Diop, K.M. Tichauer, T.Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy”, J. Biomed. Opt. 15, 037014 (2010). http://dx.doi.org/10.1117/1.344957910.1117/1.3449579Search in Google Scholar

[34] P. Desmettre, “Diagnosis and prevention of equine infectious diseases: present status, potential, and challenges for the future” Adv. Vet. Med. 41, 359–77 (1999). http://dx.doi.org/10.1016/S0065-3519(99)80027-510.1016/S0065-3519(99)80027-5Search in Google Scholar

[35] M. Hope-Ross, L.A. Yannuzzi, E.S. Gragoudas, D.R. Guyer, J.S. Slakter, J.A. Sorenson, S. Krupsky, D.A. Orlock, and C.A. Puliafito, “Adverse reactions due to indocyanine green”, Ophthalmology 101, 529–33 (1994). http://dx.doi.org/10.1016/S0161-6420(94)31303-010.1016/S0161-6420(94)31303-0Search in Google Scholar

[36] R. Springett, Y. Sakata, and D.T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green”, Phys. Med. Biol. 46, 2209–25 (2001). http://dx.doi.org/10.1088/0031-9155/46/8/31210.1088/0031-9155/46/8/312Search in Google Scholar

[37] E. Keller, A. Nadler, H. Alkadhi, S.S. Kollias, Y. Yonekawa, and P. Niederer, “Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution”, Neuroimage 20, 828–39 (2003). http://dx.doi.org/10.1016/S1053-8119(03)00315-X10.1016/S1053-8119(03)00315-XSearch in Google Scholar

[38] C. Terborg, S. Bramer, S. Harscher, M. Simon, and O.W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green”, J. Neurol. Neurosurg. Psychiatry 75, 38–42 (2004). Search in Google Scholar

[39] A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdon- ald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance”, Neuroimage 24, 426–35 (2005). http://dx.doi.org/10.1016/j.neuroimage.2004.08.04610.1016/j.neuroimage.2004.08.046Search in Google Scholar PubMed

[40] O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J.B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke”, J. Biomed. Opt. 15, 061708 (2010). http://dx.doi.org/10.1117/1.350500910.1117/1.3505009Search in Google Scholar PubMed

[41] A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation”, J. Biomed. Opt. 16, 046011 (2011). http://dx.doi.org/10.1117/1.357401810.1117/1.3574018Search in Google Scholar PubMed

[42] A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain”, Neuroimage 31, 600–8 (2006). http://dx.doi.org/10.1016/j.neuroimage.2005.12.04610.1016/j.neuroimage.2005.12.046Search in Google Scholar PubMed

[43] J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain”, Neurodegener. Dis. 5, 296–303 (2008). http://dx.doi.org/10.1159/00013561410.1159/000135614Search in Google Scholar PubMed

[44] A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements”, J. Biomed. Opt. 17, 057003 (2012). http://dx.doi.org/10.1117/1.JBO.17.5.05700310.1117/1.JBO.17.5.057003Search in Google Scholar PubMed

[45] D. Milej, A. Gerega, N. Zolek, W. Weigl, M. Kacprzak, P. Sawosz, J. Maczewska, K. Fronczewska, E. Mayzner-Za- wadzka, L. Krolicki, R. Maniewski, and A. Liebert, “Time-resolved detection of fluorescent light during inflow of ICG to the brain-a methodological study”, Phys. Med. Biol. 57, 6725–42 (2012). http://dx.doi.org/10.1088/0031-9155/57/20/672510.1088/0031-9155/57/20/6725Search in Google Scholar PubMed

[46] A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Lieber, “Multi-wavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain”, J. Biomed. Opt. 17, 087001 (2012). http://dx.doi.org/10.1117/1.JBO.17.8.08700110.1117/1.JBO.17.8.087001Search in Google Scholar PubMed

[47] W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kac- przak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Lieber, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method”, Neuroimage 85, 555–565 (2014). http://dx.doi.org/10.1016/j.neuroimage.2013.06.06510.1016/j.neuroimage.2013.06.065Search in Google Scholar PubMed

[48] M. Kacprzak, A. Liebert, P. Sawosz, N. Żołek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation”, J. Biomed. Opt. 12, 034019 (2007). http://dx.doi.org/10.1117/1.274396410.1117/1.2743964Search in Google Scholar PubMed

[49] D. Milej, M. Kacprzak, N. Żołek, P. Sawosz, R. Maniewski, and A. Liebert, An Instrument for Monitoring Inflow and Washout of An Optical Contrast Agent into The Brain, in Information Technologies in Biomedicine, E. Pietka and J. Kawa Editors, pp. 85–90, Springer Berlin / Heidelberg: Berlin, 2010. 10.1007/978-3-642-13105-9_9Search in Google Scholar

[50] D. Milej, M. Kacprzak, N. Zolek, A. Liebert, and R. Maniewski, “Advantages of fluorescence over diffuse reflectance measurements tested in phantom experiments with dynamic inflow of ICG”, Opto-Electron. Rev. 18, 208–213 (2010). http://dx.doi.org/10.2478/s11772-010-0013-z10.2478/s11772-010-0013-zSearch in Google Scholar

[51] A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fibre dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media”, J. Biomed. Opt. 8, 512–516 (2003). http://dx.doi.org/10.1117/1.157808810.1117/1.1578088Search in Google Scholar PubMed

[52] M.S. Patterson and B.W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues”, Appl. Opt. 33, 1963–74 (1994). http://dx.doi.org/10.1364/AO.33.00196310.1364/AO.33.001963Search in Google Scholar PubMed

[53] A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Mac- donald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons”, Appl. Opt. 42, 5785–92 (2003). http://dx.doi.org/10.1364/AO.42.00578510.1364/AO.42.005785Search in Google Scholar PubMed

[54] W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Chemical Physics Berlin Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/3-540-28882-110.1007/3-540-28882-1Search in Google Scholar

[55] A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons”, Appl. Opt. 43, 3037–3047 (2004). http://dx.doi.org/10.1364/AO.43.00303710.1364/AO.43.003037Search in Google Scholar

[56] M. Jager and A. Kienle, “Non-invasive determination of the absorption coefficient of the brain from time-resolved reflectance using a neural network”, Phys. Med. Biol. 56, 139–144 (2011). http://dx.doi.org/10.1088/0031-9155/56/11/N0210.1088/0031-9155/56/11/N02Search in Google Scholar PubMed

[57] N. Zolek, A. Liebert, D. Milej, M. Kacprzak, A. Torricelli, D. Contini, L. Spinelli, M. Caffini, L. Zucchelli, R. Cubeddu, A. Jelzow, O. Steinkellner, H. Wabnitz, S. Koch, J. Stein- brink, and W. Weigl, “Comparative study of algorithms to derive changes in hemoglobin concentrations from time domain near infrared spectroscopy measurements” in Eur. Conf. Biomed. Opt., Munich, 2011 Search in Google Scholar

[58] A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, J. Swart- ling, T. Svensson, S. Andersson-Engels, R.L. van Veen, H.J. Sterenborg, J.M. Tualle, H.L. Nghiem, S. Avrillier, M. Whe- lan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protoco”, Appl. Opt. 44, 2104–2014 (2005). http://dx.doi.org/10.1364/AO.44.00210410.1364/AO.44.002104Search in Google Scholar

[59] H. Obrig, T. Wolf, C. Doge, J.J. Hulsing, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes during motor and somatosensory stimulation in humans, as measured by near-infrared spectroscopy”, Adv. Exp. Med. Biol. 388, 219–224 (1996). http://dx.doi.org/10.1007/978-1-4613-0333-6_2710.1007/978-1-4613-0333-6_27Search in Google Scholar PubMed

[60] V. Toronov, M.A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping”, Med. Phys. 27, 801–815 (2000). http://dx.doi.org/10.1118/1.59894310.1118/1.598943Search in Google Scholar PubMed

[61] G. Strangman, J.P. Culver, J.H. Thompson, and D.A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation”, Neuroimage 17, 719–731 (2002). http://dx.doi.org/10.1006/nimg.2002.122710.1006/nimg.2002.1227Search in Google Scholar

[62] T.J. Huppert, R.D. Hoge, S.G. Diamond, M.A. Franceschini, and D.A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans”, Neuroimage 29, 368–382 (2006). http://dx.doi.org/10.1016/j.neuroimage.2005.08.06510.1016/j.neuroimage.2005.08.065Search in Google Scholar PubMed PubMed Central

[63] M. Butti, D. Contini, E. Molteni, M. Caffini, L. Spinelli, G. Baselli, A.M. Bianchi, S. Cerutti, R. Cubeddu, and A. Torricelli, “Effect of prolonged stimulation on cerebral hemodynamic: a time-resolved fNIRS study”, Med. Phys. 36, 4103–4114 (2009). http://dx.doi.org/10.1118/1.319055710.1118/1.3190557Search in Google Scholar PubMed

[64] L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study”, Neuroimage 46, 1105–1113 (2009). http://dx.doi.org/10.1016/j.neuroimage.2009.03.02710.1016/j.neuroimage.2009.03.027Search in Google Scholar PubMed

[65] H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain”, Adv. Exp. Med. Biol. 662, 143–148 (2010). http://dx.doi.org/10.1007/978-1-4419-1241-1_2010.1007/978-1-4419-1241-1_20Search in Google Scholar PubMed

[66] L. Gagnon, M.A. Yucel, M. Dehaes, R.J. Cooper, K.L. Perdue, J. Selb, T.J. Huppert, R.D. Hoge, and D.A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements”, Neuroimage 59, 3933–3940 (2012). http://dx.doi.org/10.1016/j.neuroimage.2011.10.05410.1016/j.neuroimage.2011.10.054Search in Google Scholar PubMed PubMed Central

[67] H. Karim, S.I. Fuhrman, P. Sparto, J. Furman, and T. Huppert, “Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy”, Neuroimage 74C, 318–325 (2013). http://dx.doi.org/10.1016/j.neuroimage.2013.02.01010.1016/j.neuroimage.2013.02.010Search in Google Scholar PubMed PubMed Central

[68] M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery”, J. Biomed. Opt. 17, 016002 (2012). http://dx.doi.org/10.1117/1.JBO.17.1.01600210.1117/1.JBO.17.1.016002Search in Google Scholar PubMed

[69] A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating”, Phys. Rev. Lett. 100, 138101 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.13810110.1103/PhysRevLett.100.138101Search in Google Scholar PubMed

[70] M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spi- nelli, A. Pifferi, R. Cubeddu, A.D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation”, Opt. Express 20, 283–290 (2012). http://dx.doi.org/10.1364/OE.20.00028310.1364/OE.20.000283Search in Google Scholar PubMed

[71] P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimic local changes in oxygenation of the brain tissue”, Opto-Electron. Rev. 20, 309–314 (2012). http://dx.doi.org/10.2478/s11772-012-0041-y10.2478/s11772-012-0041-ySearch in Google Scholar

[72] J. Selb, D.K. Joseph, and D.A. Boas, “Time-gated optical system for depth-resolved functional brain imaging”, J. Biomed. Opt. 11, 044008 (2006). http://dx.doi.org/10.1117/1.233732010.1117/1.2337320Search in Google Scholar PubMed

[73] P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications” in Proc. SPIE 8565, 85654M (2013). http://dx.doi.org/10.1117/12.200367110.1117/12.2003671Search in Google Scholar

[74] P. Sawosz, M. Kacprzak,W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement”, Phys. Med. Biol. 57, 7973–7981 (2012). http://dx.doi.org/10.1088/0031-9155/57/23/797310.1088/0031-9155/57/23/7973Search in Google Scholar PubMed

[75] J.C. Hebden, A. Gibson, T. Austin, R.M. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography”, Phys. Med. Biol. 49, 1117–1130 (2004). http://dx.doi.org/10.1088/0031-9155/49/7/00310.1088/0031-9155/49/7/003Search in Google Scholar PubMed

[76] M. Diop, K.M. Tichauer, J.T. Elliott, M. Migueis, T.Y. Lee, and K. St Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets”, J. Biomed. Opt. 15, 057004 (2010). http://dx.doi.org/10.1117/1.348862610.1117/1.3488626Search in Google Scholar PubMed

[77] B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods”, Appl. Opt. 44, 1942–1947 (2005). http://dx.doi.org/10.1364/AO.44.00194210.1364/AO.44.001942Search in Google Scholar

[78] D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy”, Opt. Express 14, 5418–5432 (2006). http://dx.doi.org/10.1364/OE.14.00541810.1364/OE.14.005418Search in Google Scholar PubMed

[79] L. Ostergaard, “Cerebral perfusion imaging by bolus tracking”, Top Magn. Reson. Imaging 15, 3–9 (2004). http://dx.doi.org/10.1097/00002142-200402000-0000210.1097/00002142-200402000-00002Search in Google Scholar PubMed

[80] L. Ostergaard, “Principles of cerebral perfusion imaging by bolus tracking”, J. Magn. Reson. Imaging 22, 710–717 (2005). http://dx.doi.org/10.1002/jmri.2046010.1002/jmri.20460Search in Google Scholar PubMed

[81] J. Woitzik, P.G. Pena-Tapia, U.C. Schneider, P. Vajkoczy, and C. Thome, “Cortical perfusion measurement by indocyanine-green videoangiography in patients undergoing hemicraniectomy for malignant stroke”, Stroke 37, 1549–5151 (2006). http://dx.doi.org/10.1161/01.STR.0000221671.94521.5110.1161/01.STR.0000221671.94521.51Search in Google Scholar PubMed

[82] A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green”, J. Biomed. Opt. 16, 067010 (2011). http://dx.doi.org/10.1117/1.359338610.1117/1.3593386Search in Google Scholar PubMed

[83] A. Oldag, M. Goertler, A.K. Bertz, S. Schreiber, C. Stoppel, H.J. Heinze, and K. Kopitzki, “Assessment of cortical hemodynamics by multichannel near-infrared spectroscopy in steno-occlusive disease of the middle cerebral artery”, Stroke 43, 2980–2985 (2012). http://dx.doi.org/10.1161/STROKEAHA.112.65671010.1161/STROKEAHA.112.656710Search in Google Scholar PubMed

[84] J.T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L.B. Morrison, T.Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs”, Biomed. Opt. Express 4, 206–218 (2013). http://dx.doi.org/10.1364/BOE.4.00020610.1364/BOE.4.000206Search in Google Scholar PubMed PubMed Central

Published Online: 2013-12-29
Published in Print: 2014-3-1

© 2014 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-014-0178-y/html
Scroll to top button