Abstract
In this article we investigate the equivalence of underdetermined differential equations and differential equations with deviations of second order with respect to the pseudogroup of transformations $$ \bar x $$ = φ(x), ȳ = ȳ($$ \bar x $$) = L(x) + y(x), $$ \bar z $$ = $$ \bar z $$($$ \bar x $$) = M(x) + z(x). Our main aim is to determine such equations that admit a large pseudogroup of symmetries. Instead the common direct calculations, we use some more advanced tools from differential geometry, however, our exposition is self-contained and only the most fundamental properties of differential forms are employed.
[1] AWANE, A.— GOZE, M.: Pfaffian Systems, k-symplectic Systems, Kluwer Academic Publischers, Dordrecht-Boston-London, 2000. 10.1007/978-94-015-9526-1Search in Google Scholar
[2] BRYANT, R.— CHERN, S. S.— GOLDSCHMIDT, H.— GRIFFITHS, P. A.: Exterior Differential Systems. Math. Sci. Res. Inst. Publ. 18, Cambridge Univ. Press, Cambridge, 1991. 10.1007/978-1-4613-9714-4Search in Google Scholar
[3] CARTAN, E.: Les systémes différentiels extérieurs et leurs applications géometriques. Actualités Sci. Indust. 994, Hermann, Paris, 1945. Search in Google Scholar
[4] CARTAN, E.: Sur la structure des groupes infinis de transformations, Ann. Sci. École Norm. Ser. 3 21, 1904; Oeuvres Complètes, Partie II, Vol 2, Gauthier-Villars, Paris 1953. 10.24033/asens.538Search in Google Scholar
[5] CHRASTINA, J.: Transformations of differential equations. In: Equadiff 9 CD ROM, Papers, Masaryk Univerzity, Brno 1997, pp. 83–92. Search in Google Scholar
[6] CHRASTINA, J.: The Formal Theory of Differential Equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 6, Masaryk Univ., Brno, 1998. Search in Google Scholar
[7] GARDNER, R. B.: The Method of Equivalence and its Applications. CBMS-NSF Regional Conf. Ser. in Appl. Math. 58, SIAM, Philadelphia, PA, 1989. 10.1137/1.9781611970135Search in Google Scholar
[8] NEUMAN, F.: Global Properties of Linear Ordinary Differential Equations. Math. Appl. (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London, 1991. Search in Google Scholar
[9] SHARPE, R. V.: Differential Geometry. Grad. Texts in Math. 166, Springer Verlag, New York, 1997. Search in Google Scholar
[10] TRYHUK, V.— DLOUHÝ, O.: The moving frames for differential equations: Part I.: The change of independent variable; Part II.: Underdetermined and functional equations, Arch. Math. (Brno) 39 (2003), 317–333; 40 (2004), 69–88. Search in Google Scholar
© 2008 Mathematical Institute, Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.