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ABSTRACT. We show that a 2-homogeneous polynomial on the complex Ba-
nach space c0

(
li2
)

is norm attaining if and only if it is finite (i.e, depends only on
finite coordinates). As the consequence, we show that there exists a unique norm-

preserving extension for norm-attaining 2-homogeneous polynomials on c0
(
li2
)
.
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1. Introduction

It is well known that if a Banach space E is an M-ideal in its bidual E′′, then
every continuous linear functional ϕ on E has a unique Hahn-Banach extension
to E′′. In general, this result is not true for n-homogeneous polynomials. In [1]
A r o n–B o y d–C h o i showed that in the case of complex space c0 (it is an
M-ideal in l∞), any 2-homogeneous polynomial on c0, which attains its norm
can be uniquely extended to its bidual l∞. It was also shown there that for
n-homogeneous polynomials, where n ≥ 3, it is impossible in general. A simi-
lar problem was considered by C h o i –H a n–S o n g in [2] for Lorentz sequences
spaces, later on it was generalized by K a m i n s k a –L e e in [4] for Banach func-
tion spaces, rearrangement invariant (r.i.) sequence spaces and Marcinkiewicz
sequence spaces.

In this paper, we investigate the analogous problem in the complex Banach
space c0

(
li2
)

which is an M-ideal in its bidual. In fact, we will show that there
exists a unique norm-preserving extension for norm-attaining 2-homogeneous
polynomials on c0

(
li2
)
. We observe that this result is not a immediate conse-

quence of the previously known results in [4].
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We refer to [3] for notation and results regarding homogeneous polynomials.
Let us denote by ln2 the space C

n with the Euclidean norm. In this work we
will consider the Banach space

X = c0
(
li2
)

=
{

(λj)j∈N : λj ∈ lj2 and
(‖λj‖2

)
j∈N

∈ c0

}
and its bidual

X ′′ = l∞
(
li2
)

=
{

(λj)j∈N : λj ∈ lj2 and (‖λj‖2)j∈N ∈ l∞
}
,

where, in both cases, we will work with the norm ‖(λj)‖ = sup
j

‖λj‖2.

The relevance of such space is because X ′′ was the first example for which the
Dunford-Pettis property fails, but its predual X ′ = l1

(
li2
)

has it. This example
was given by C . S t e g a l l in [5].

Let us denote by (ei
j), j ≤ i, the unit sequence (ei

j) = (0, 0, . . . ,

ith︷︸︸︷
λi , 0, . . .),

where λi = (0, . . . ,

jth︷︸︸︷
1 , . . . , 0) ∈ li2. Such sequence is a Schauder basis for X. By

BX and SX we will denote the closed unit ball and unit sphere ofX, respectively.
In some cases, it is useful to write the elements of those spaces as an infinite
matrix:

x = (λ1, λ2, λ3, . . .) =

⎛
⎝λ1

1 λ2
1 λ3

1 · · ·
λ2

2 λ3
2 · · ·
λ3

3 · · ·

⎞
⎠ ,

where the ith column is an element of li2.

2. Results

We will denote by P (mX) the Banach space of all continuous m-homogeneous
polynomials on X with the norm ‖P‖ = sup

x∈BX

|P (x)|. A polynomial P ∈ P (mX)

is norm-attaining if there exists x ∈ BX such that ‖P‖ = P (x).
Our attention turns to examine a norm-attaining polynomial P in P (2X).

We give a characterization of the norm-attaining 2-homogeneous polynomials
on X ′′. To do this, we employ the similar idea as in paper [1]. For this, we need
to give the following definition: A polynomial P defined on X is called finite if
there exists n ∈ N such that

P (x1, x2, . . . , xn, xn+1, xn+2, . . .) = P (x1, x2, . . . , xn, 0, 0, . . .),

for all x = (x1, x2, . . .) ∈ X. With this definition, we can show our result.
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������� 2.1� A homogeneous polynomial of degree 2 on X ′′ attains the norm
in x0 ∈ BX if and only if it is finite.

P r o o f. If P is finite, then it can be considered as a polynomial in
n⊕

i=1
li2, for

some n and it is trivial that it attains its norm.
Now, we assume that P ∈ P (2X ′′) is norm-attaining in x0 = (λ1, λ2, . . .)

∈ SX .
Obviously, if ‖P‖ = 0, then P is finite. So, we can assume that ‖P‖ = 1.
Let J =

{
j ∈ N : ‖λj‖2 = 1

}
. Since x0 ∈ X, then J is finite. Without loss

of generality, let us assume that J = {1, 2, . . . , n}.
For each j ∈ J , λj �= 0. So, for each j ∈ J , we can take an orthonormal

basis Bj such that all the coordinates of λj are not nulls. Now, we write all of
the other λj in the canonical basis of C

j and then we can represent x0 in the
following way

x0 = (λ1, λ2, λ3, . . .) =

⎛
⎝λ1

1 λ2
1 λ3

1 · · ·
λ2

2 λ3
2 · · ·
λ3

3 · · ·

⎞
⎠ .

For all y ∈ BX′′ being y = (0, 0, . . . , yn+1, yn+2, . . .) and for each λ ∈ C with
|λ| = 1 − sup

i>n
‖λi‖2 > 0 we get ‖x0 ± λy‖ ≤ 1. Therefore, |P (x0 ± λy)| ≤ 1, and

then

|P (x0) ± 2λP̌ (x0, y) + λ2P (y)| = |1 ± 2λP̌ (x0, y) + λ2P (y)| ≤ 1, (∗)
where P̌ denotes the symmetric bilinear map associated to P . Adding the equa-
tions we get |1 + λ2P (y)| ≤ 1. If P (y) �= 0, we could take λ such that λ2P (y)
could have the real part positive, and it will be a contradiction. It follows that
P (y) = 0, for all y being as above. In particular, P (0, 0, . . . , λn+1, λn+2, . . .) = 0.

For (∗), we get |1 ± 2λP̌ (x0, y)| ≤ 1. This means that the complex number
2λP̌ (x0, y) is in the disks with centers ±1 and radius 1. Then, we will get
2λP̌ (x0, y) = 0, i.e., P̌ (x0, y) = 0, for all y as above. Taking y = (0, 0, . . .
. . . , λn+1, λn+2, . . .), we will get

P (x0 − y) = P (x0) − 2P̌ (x0, y) + P (y) = 1,

and then P (λ1, λ2, . . . , λn, 0, 0, . . .) = 1.
Now, we will prove that for the other points P also depends just on the first

n variables. Let A =
{
(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ i

}
and A∗ = A \ {(1, 1)}.

We define z1
1 = (λ1, λ2 . . . λn, 0, 0, . . .) and for (i, j) ∈ A∗ we define

zi
j = z1

1 −mei
j,
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where m := 1 + 2 + · · · + n. For each x = (xi
j) ∈

n⊕
i=1

li2 we can write

(x1, x2, . . . , xn, 0, 0, . . .) =
1
m

∑
(i,j)∈A

xi
j

λi
j

z1
1 +

1
m

∑
(i,j)∈A∗

(
x1

1

λ1
1

− xi
j

λi
j

)
zi

j.

For all y = (0, 0, . . . , yn+1, yn+2, . . .) with ‖y‖ ≤ 1 we have that ‖z1
1 ± y‖ = 1,

and so |P (z1
1 ± y)| ≤ 1. But

|P (z1
1 ± y)| ≤ 1 =⇒ |P (z1

1) ± 2P̌ (z1
1 , y) + P (y)| ≤ 1 =⇒ |1 ± 2P̌ (z1

1 , y)| ≤ 1

and therefore P̌ (z1
1 , y) = 0, for all y = (0, 0, . . . , λn+1, λn+2, . . .). Hence, for all

(x1, x2, . . . , xn, yn+1, yn+2, . . .) ∈ X we can write

P (x1, . . . , xn, yn+1, yn+2, . . .)

=P

( x︷ ︸︸ ︷
(x1, . . . , xn, 0, 0, . . .)+

y︷ ︸︸ ︷
(0, . . . , 0, yn+1, yn+2, . . .)

)
=P (x) + 2P̌ (x, y) + P (y) = P (x) + 2P̌ (x, y)

=P (x) + 2P̌

⎛
⎝ 1
m

∑
(i,j)∈A

xi
j

λi
j

z1
1 +

1
m

∑
(i,j)∈A∗

(
x1

1

λ1
1

− xi
j

λi
j

)
zi

j , y

⎞
⎠

=P (x) +
2
n

∑
(i,j)∈A∗

(
x1

1

λ1
1

− xi
j

λi
j

)
P̌ (zi

j, y)

=P (x) +
∑

(i,j)∈A∗

(
x1

1

λ1
1

− xi
j

λi
j

)
ψi

j(y),

where ψi
j = 2

n P̌ (zi
j , ·) ∈ X ′. Now we will show that ψi

j(y) = 0 for all (i, j) ∈ A∗

and y = (0, 0, . . . , yn+1, yn+2, . . .). Let us assume (i, j) = (2, 1), since the other
indices are analogous.

For each θ, we define λ(θ) ∈
n⊕

i=1
li2 by

λ(θ) =

⎛
⎜⎜⎜⎝
λ1

1 λ2
1eiθ · · · λn

1

λ2
2 · · · λn

2

. . .
...
λn

n

⎞
⎟⎟⎟⎠ .

Hence, we have that

P (λ(θ), yn+1, yn+2, . . .) = P (λ(θ), 0, 0, . . .) + (1 − eiθ)ψ2
1(y).
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Since the basis B2 was chosen orthonormal, we get (λ2
1eiθ, λ2

2) ∈ Bl22
and then,

λ(θ) ∈ BX . As ‖P‖ = 1, we have

|P (λ(θ), 0, 0, . . .) + (1 − eiθ)ψ2
1(y)| ≤ 1,

for all y = (0, 0, . . . , yn+1, yn+2, . . .) with ‖y‖ ≤ 1. Taking λ ∈ C with |λ| ≤ 1
such that P (λ(θ), 0, 0, . . .) and λ(1− eiθ)ψ2

1(y) have the same argument, then we
will get

|P (λ(θ), 0, 0, . . .)| + |(1 − eiθ)||ψ2
1(y)| = |P (λ(θ), 0, . . .) + λ(1 − eiθ)ψ2

1(y)| ≤ 1.

Then, for each y as above we can see that |ψ2
1(y)| ≤ 1−f(θ)

g(θ) , where f(θ) =
|P (λ(θ), 0, 0, . . .)| and g(θ) = |1 − eiθ|.

Since f(0) = 1, f is differentiable in θ = 0. As f has a local maximum in
θ = 0 consequently f ′(0) = 0. For θ > 0,

g(θ) = |1 − (cos θ + i sin θ)| = 2 sin
θ

2
.

Hence, g′(θ) = cos θ
2 and lim

θ→0+
cos θ

2 = 1. Using the L’Hospital rule,

|ψ2
1(y)| ≤ lim

θ→0+

1 − f(θ)
g(θ)

= lim
θ→0+

−f ′(θ)
g′(θ)

= 0.

So, |ψ2
1(y)| = 0 for all y as above. Then,

P (x1, x2, . . . , xn, yn+1, yn+2, . . .) = P (x1, x2, . . . , xn, 0, 0, . . .)

for all (x1, x2, . . . , xn, yn+1, yn+2, . . .) ∈ X and consequently P depends only on
finite coordinates. �

We observe that in the proof of Theorem 2.1 the existence of a basis in C
n for

which the coordinates can be written not vanishing, without changing the norm
expression in the space, it was essential. Such characterization is not possible if
we replace the Euclidean norm of C

n for example by the norm ‖ · ‖1. In order
to see this, let us consider the 2-homogeneous polynomial defined as

P (x) = 2(x2
1)

2 + x2
2

( ∞∑
j=3

1
2j−2

xj
1

)
,

where x =

⎛
⎝x1

1 x2
1 x3

1 · · ·
x2

2 x3
2 · · ·
x3

3 · · ·

⎞
⎠ ∈ c0

(
li1
)
. Certainly P is not finite. We will

prove it attains its norm. Let us observe that P (e21) = 2. If ‖x‖ ≤ 1, we have

|P (x)| =

∣∣∣∣∣2(x2
1)

2 + x2
2

( ∞∑
j=3

1
2j−2

xj
1

)∣∣∣∣∣ ≤ 2
∣∣(x2

1)
2
∣∣+ ∣∣x2

2

∣∣ .
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Then, it is enough to show that, for 0 ≤ r ≤ 1, and a, b ≥ 0 with a + b = r, we
have 2a2 + b ≤ 2. But, taking b = r − a, it is easy to see that 2a2 + r − a ≤ 2,
independent of the r chosen. Hence, P attains its norm in e21.

As a consequence of the Theorem 2.1, we have the uniqueness of the norm-
preserving extension for the norm-attaining 2-homogeneous polynomials.

������	�
 2.2� Let P be a norm-attaining 2-homogeneous polynomial on X.
Then, there exists a unique norm-preserving extension of P to X ′′.

P r o o f. Let P̄ be a norm-preserving extension of P to X ′′. Since P is norm-
attaining, P̄ attains its norm in a point x0 ∈ BX . By Theorem 2.1 P̄ is finite.
Then, another norm-preserving extension of P is finite too and it coincides
with P̄ . �

The Corollary 2.2 is not true for n-homogeneous polynomials if n ≥ 3. Indeed,
by Corollary 2.5 in [4], for each n ≥ 3, there exists a n-homogeneous polynomial
that attains its norm, but it has at least two norm-preserving extensions.
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