Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 20, 2012

Associativity of operations on orthomodular lattices

  • Jeannine Gabriëls EMAIL logo and Mirko Navara
From the journal Mathematica Slovaca

Abstract

It is known that orthomodular lattices admit 96 binary operations, out of which 16 are commutative. We clarify which of them are associative.

[1] BERAN, L.: Orthomodular Lattices. Algebraic Approach, Academia, Praha, 1984. 10.1007/978-94-009-5215-7Search in Google Scholar

[2] BIRKHOFF, G.— VON NEUMANN, J.: The logic of quantum mechanics, Ann. of Math. (2) 37 (1936), 823–843. http://dx.doi.org/10.2307/196862110.2307/1968621Search in Google Scholar

[3] D’HOOGHE, B.— PYKACZ, J.: On some new operations on orthomodular lattices, Internat. J. Theoret. Phys. 39 (2000), 641–652. http://dx.doi.org/10.1023/A:100363780463210.1023/A:1003637804632Search in Google Scholar

[4] FOULIS, D.: A note on orthomodular lattices, Portugal. Math. 21 (1962), 65–72. Search in Google Scholar

[5] GREECHIE, R. J.: On generating distributive sublattices of orthomodular lattices, Proc. Amer. Math. Soc. 67 (1977), 17–22. http://dx.doi.org/10.1090/S0002-9939-1977-0450157-910.1090/S0002-9939-1977-0450157-9Search in Google Scholar

[6] GREECHIE, R. J.: An addendum to “On generating distributive sublattices of orthomodular lattices”, Proc. Amer. Math. Soc. 76 (1979), 216–218. Search in Google Scholar

[7] GUDDER, S. P.: Quantum Probability, Academic Press, New York, 1988. 10.1007/BF00670748Search in Google Scholar

[8] HERRMANN, C.: The free orthomodular word problem is solved (review of the paper by G. Kalmbach), Zent.bl. MATH, Zbl 0585.06004; MR, MR 87k:06023. Search in Google Scholar

[9] HOLLAND Jr., S. S.: A Radon-Nikodym theorem in dimension lattices, Trans. Amer. Math. Soc. 108 (1963), 66–87. http://dx.doi.org/10.1090/S0002-9947-1963-0151407-310.1090/S0002-9947-1963-0151407-3Search in Google Scholar

[10] HYČKO, M.: Implications and equivalences in orthomodular lattices, Demonstratio Math. 38 (2005), 777–792. Search in Google Scholar

[11] HYČ KO, M.— NAVARA, M.: Decidability in orthomodular lattices, Internat. J. Theoret. Phys. 44 (2005), 2239–2248. http://dx.doi.org/10.1007/s10773-005-8019-x10.1007/s10773-005-8019-xSearch in Google Scholar

[12] KALMBACH, G.: Orthomodular Lattices, Academic Press, London, 1983. Search in Google Scholar

[13] KALMBACH, G.: The free orthomodular word problem is solved, Bull. Austral. Math. Soc. 34 (1986), 219–223. http://dx.doi.org/10.1017/S000497270001008X10.1017/S000497270001008XSearch in Google Scholar

[14] KRÖGER, H.: Zwerch-Assoziativität und verbandsähnliche Algebren, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 3 (1973), 23–48. Search in Google Scholar

[15] MEGILL, N. D.— PAVIČIĆ, M.: Orthomodular lattices and a quantum algebra, Internat. J. Theoret. Phys. 40 (2001), 1387–1410. http://dx.doi.org/10.1023/A:101756782644810.1023/A:1017567826448Search in Google Scholar

[16] MEGILL, N. D.— PAVIČIĆ, M.: Equivalencies, identities, symmetric differences, and congruences in orthomodular lattices, Internat. J. Theoret. Phys. 42 (2003), 2797–2805. http://dx.doi.org/10.1023/B:IJTP.0000006006.18494.1c10.1023/B:IJTP.0000006006.18494.1cSearch in Google Scholar

[17] MEGILL, N. D.— PAVIČIĆ, M.: Quantum implication algebras, Internat. J. Theoret. Phys. 42 (2003), 2807–2822. http://dx.doi.org/10.1023/B:IJTP.0000006007.58191.da10.1023/B:IJTP.0000006007.58191.daSearch in Google Scholar

[18] NAVARA, M.: On generating finite orthomodular sublattices, Tatra Mt. Math. Publ. 10 (1997), 109–117. Search in Google Scholar

Published Online: 2012-12-20
Published in Print: 2012-12-1

© 2012 Mathematical Institute, Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 23.2.2024 from https://www.degruyter.com/document/doi/10.2478/s12175-012-0065-2/html
Scroll to top button