Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter May 8, 2014

Asymptotic behavior in neutral difference equations with negative coefficients

  • G. Chatzarakis EMAIL logo and G. Miliaras
From the journal Mathematica Slovaca

Abstract

In this paper, we study the asymptotic behavior of the solutions of a neutral difference equation of the form $\Delta [x(n) + cx(\tau (n))] - p(n)x)(\sigma (n)) = 0,$, where τ(n) is a general retarded argument, σ(n) is a general deviated argument, c ∈ ℝ, (−p(n))n≥0 is a sequence of negative real numbers such that p(n) ≥ p, p ∈ ℝ+, and Δ denotes the forward difference operator Δx(n) = x(n+1)−x(n).

[1] AGARWAL, R. P.— BOHNER, M.— GRACE, S. R.— O’REGAN, D.: Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005. http://dx.doi.org/10.1155/978977594519810.1155/9789775945198Search in Google Scholar

[2] BAŠTINEC, J.— BEREZANSKY, L.— DIBLÍK, J.— ŠMARDA, Z.: A final result on the oscillation of solutions of the linear discrete-delayed equation Δx(n) = −p(n)x(n − k) with a positive coefficient, Abstr. Appl. Anal. (2011), ID 586328, 28 pp. Search in Google Scholar

[3] BAŠTINEC, J.— DIBLÍK, J.— ŠMARDA, Z.: Existence of positive solutions of discrete linear equations with a single delay, J. Difference Equ. Appl. 16 (2010), 1047–1056. http://dx.doi.org/10.1080/1023619090271802610.1080/10236190902718026Search in Google Scholar

[4] BELLMAN, R.— COOKE, K. L.: Differential-Difference Equations, Academic Press, New York-London, 1963. 10.1063/1.3050672Search in Google Scholar

[5] BRAYTON, R. K.— WILLOUGHBY, R. A.: On the numerical integration of a symmetric system of difference-differential equations of neutral type, J. Math. Anal. Appl. 18 (1967), 182–189. http://dx.doi.org/10.1016/0022-247X(67)90191-610.1016/0022-247X(67)90191-6Search in Google Scholar

[6] BRUMLEY, W. E.: On the asymptotic behavior of solutions of differential-difference equations of neutral type, J. Differential Equations 7 (1970), 175–188. http://dx.doi.org/10.1016/0022-0396(70)90131-210.1016/0022-0396(70)90131-2Search in Google Scholar

[7] CHATZARAKIS, G. E.— KARAKOSTAS, G. L.— STAVROULAKIS, I. P.: Convergence of the positive solutions of a nonlinear neutral difference equation, Nonlinear Oscil. (N. Y.) 14 (2011), 407–418. Search in Google Scholar

[8] CHATZARAKIS, G. E.— MILIARAS, G. N.: Convergence and divergence of the solutions of a neutral difference equation, J. Appl. Math. (2011), ID 262316, 18 pp. Search in Google Scholar

[9] DIBLÍK, J.— SVOBODA, Z.— ŠMARDA, Z.: Retract principle for neutral functional differential equations, Nonlinear Anal. 71 (2009), e1393–e1400. http://dx.doi.org/10.1016/j.na.2009.01.16410.1016/j.na.2009.01.164Search in Google Scholar

[10] GEORGIOU, D. A.— GROVE, E. A.— LADAS, G.: Oscillation of neutral difference equations with variable coefficients. In: Lecture Notes Pure Appl. Math. 127, Dekker, New York, 1991, pp. 165–173. Search in Google Scholar

[11] GYORI, I.— HORVAT, L.: Asymptotic constancy in linear difference equations: limit formulae and sharp conditions, Adv. Difference Equ. (2010), DOI: 10.1155/2010/789302. 10.1155/2010/789302Search in Google Scholar

[12] GYORI, I.— LADAS, G.: Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991. Search in Google Scholar

[13] HUNG, D. C.: Oscillation and Convergence for a neutral difference equation, J. Sci. Math.-Phys. 24 (2008), 133–143. Search in Google Scholar

[14] JIA, J.— ZHONG, X.— GONG, X.— QUYANG R.— HAN, H.: Nonoscillation of firstorder neutral difference equation, Modern Appl. Sci. 3 (2009), 30–33. 10.5539/mas.v3n11p30Search in Google Scholar

[15] LALLI, B. S.— ZHANG, B. G.: On existence of positive solutions and bounded oscillations for neutral difference equations, J. Math. Anal. Appl. 166 (1992), 272–287. http://dx.doi.org/10.1016/0022-247X(92)90342-B10.1016/0022-247X(92)90342-BSearch in Google Scholar

[16] LALLI, B. S.— ZHANG, B. G.— LI, J. Z.: On the oscillation of solutions of neutral difference equations, J. Math. Anal. Appl. 158 (1991), 213–233. http://dx.doi.org/10.1016/0022-247X(91)90278-810.1016/0022-247X(91)90278-8Search in Google Scholar

[17] MIGDA, M.— ZHANG, G.: On unstable neutral Difference equations with maxima, Math. Slovaca 56 (2006), 451–463. Search in Google Scholar

[18] PEICS, H.: Positive solutions of neutral delay difference equation, NoviSad J. Math. 35 (2005), 111–122. Search in Google Scholar

[19] SNOW, W.: Existence, uniqueness and stability for nonlinear differential-difference equations in the neutral case, N. Y. U. Courant Inst. Math. Sci., IMM-NYU 328 (February 1965). Search in Google Scholar

[20] TANG, X. H.: Asymptotic behavior of solutions for neutral difference equations, Comput. Math. Appl. 44 (2002), 301–315. http://dx.doi.org/10.1016/S0898-1221(02)00149-910.1016/S0898-1221(02)00149-9Search in Google Scholar

[21] TANG, X. H.— CHENG, S. S.: Positive solutions of a neutral difference equation with positive and negative coefficients, Georgian Math. J. 11 (2004), 177–185. 10.1515/GMJ.2004.177Search in Google Scholar

[22] THANDAPANI, E.— KUMAR, P. M.: Oscillation and nonoscillation of nonlinear neutral delay difference equations, Tamkang J. Math. 38 (2007), 323–333. 10.5556/j.tkjm.38.2007.66Search in Google Scholar

[23] THANDAPANI, E.— ARUL, R.— RAJA, P. S.: The asymptotic behavior of nonoscillatory solutions of nonlinear neutral type difference equations, Math. Comput. Modelling 39 (2004), 1457–1465. http://dx.doi.org/10.1016/j.mcm.2004.07.00410.1016/j.mcm.2004.07.004Search in Google Scholar

[24] THANDAPANI, E.— MARIAN, S. L.— GRAEF, J. R.: Asymptotic behavior of nonoscillatory solutions of neutral difference equations, Comput. Math. Appl. 45 (2003), 1461–1468. http://dx.doi.org/10.1016/S0898-1221(03)00107-X10.1016/S0898-1221(03)00107-XSearch in Google Scholar

[25] WANG, X. Asymptotic behavior of solutions for neutral difference equations, Comput. Math. Appl. 52 (2006), 1595–1602. http://dx.doi.org/10.1016/j.camwa.2005.08.03710.1016/j.camwa.2005.08.037Search in Google Scholar

[26] WEI, J.: Asymptotic behavior results for nonlinear neutral delay difference equations, Appl. Math. Comput. 217 (2011), 7184–7190. http://dx.doi.org/10.1016/j.amc.2011.02.00410.1016/j.amc.2011.02.004Search in Google Scholar

[27] YU, J. S.— WANG, Z. C.: Asymptotic behavior and oscillation in neutral delay difference equations, Funkcial. Ekvac. 37 (1994), 241–248. Search in Google Scholar

Published Online: 2014-5-8
Published in Print: 2014-4-1

© 2014 Mathematical Institute, Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.3.2024 from https://www.degruyter.com/document/doi/10.2478/s12175-014-0212-z/html
Scroll to top button